These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 35447736)

  • 1. Genome Editing Technology for Genetic Amelioration of Fruits and Vegetables for Alleviating Post-Harvest Loss.
    Kumari C; Sharma M; Kumar V; Sharma R; Kumar V; Sharma P; Kumar P; Irfan M
    Bioengineering (Basel); 2022 Apr; 9(4):. PubMed ID: 35447736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome editing for improving nutritional quality, post-harvest shelf life and stress tolerance of fruits, vegetables, and ornamentals.
    Sharma P; Pandey A; Malviya R; Dey S; Karmakar S; Gayen D
    Front Genome Ed; 2023; 5():1094965. PubMed ID: 36911238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic amelioration of fruit and vegetable crops to increase biotic and abiotic stress resistance through CRISPR Genome Editing.
    Sardar A
    Front Plant Sci; 2023; 14():1260102. PubMed ID: 37841604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9 Mediated Genome Engineering for Improvement of Horticultural Crops.
    Karkute SG; Singh AK; Gupta OP; Singh PM; Singh B
    Front Plant Sci; 2017; 8():1635. PubMed ID: 28970844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review.
    Parmar N; Singh KH; Sharma D; Singh L; Kumar P; Nanjundan J; Khan YJ; Chauhan DK; Thakur AK
    3 Biotech; 2017 Aug; 7(4):239. PubMed ID: 28702937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advancing crop disease resistance through genome editing: a promising approach for enhancing agricultural production.
    Manzoor S; Nabi SU; Rather TR; Gani G; Mir ZA; Wani AW; Ali S; Tyagi A; Manzar N
    Front Genome Ed; 2024; 6():1399051. PubMed ID: 38988891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-harvest proteomics and food security.
    Pedreschi R; Lurie S; Hertog M; Nicolaï B; Mes J; Woltering E
    Proteomics; 2013 Jun; 13(12-13):1772-83. PubMed ID: 23483703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of CRISPR/Cas9 Genome Editing Technology for the Improvement of Crops Cultivated in Tropical Climates: Recent Progress, Prospects, and Challenges.
    Haque E; Taniguchi H; Hassan MM; Bhowmik P; Karim MR; Śmiech M; Zhao K; Rahman M; Islam T
    Front Plant Sci; 2018; 9():617. PubMed ID: 29868073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9 and Nanotechnology Pertinence in Agricultural Crop Refinement.
    Naik BJ; Shimoga G; Kim SC; Manjulatha M; Subramanyam Reddy C; Palem RR; Kumar M; Kim SY; Lee SH
    Front Plant Sci; 2022; 13():843575. PubMed ID: 35463432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted modification of
    Nonaka S; Ito M; Ezura H
    Front Genome Ed; 2023; 5():1176125. PubMed ID: 37304010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9-Mediated Gene Editing Revolutionizes the Improvement of Horticulture Food Crops.
    Wang T; Zhang C; Zhang H; Zhu H
    J Agric Food Chem; 2021 Nov; 69(45):13260-13269. PubMed ID: 33734711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining novel technologies with interdisciplinary basic research to enhance horticultural crops.
    Jiang X; Zhang W; Fernie AR; Wen W
    Plant J; 2022 Jan; 109(1):35-46. PubMed ID: 34699639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Critical Review: Recent Advancements in the Use of CRISPR/Cas9 Technology to Enhance Crops and Alleviate Global Food Crises.
    Rasheed A; Gill RA; Hassan MU; Mahmood A; Qari S; Zaman QU; Ilyas M; Aamer M; Batool M; Li H; Wu Z
    Curr Issues Mol Biol; 2021 Nov; 43(3):1950-1976. PubMed ID: 34889892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome editing for horticultural crop improvement.
    Xu J; Hua K; Lang Z
    Hortic Res; 2019; 6():113. PubMed ID: 31645967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9 is a powerful tool for precise genome editing of legume crops: a review.
    Rasheed A; Barqawi AA; Mahmood A; Nawaz M; Shah AN; Bay DH; Alahdal MA; Hassan MU; Qari SH
    Mol Biol Rep; 2022 Jun; 49(6):5595-5609. PubMed ID: 35585381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome Editing for Sustainable Agriculture in Africa.
    Tripathi L; Dhugga KS; Ntui VO; Runo S; Syombua ED; Muiruri S; Wen Z; Tripathi JN
    Front Genome Ed; 2022; 4():876697. PubMed ID: 35647578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome Editing and Designer Crops for the Future.
    Rana S; Aggarwal PR; Shukla V; Giri U; Verma S; Muthamilarasan M
    Methods Mol Biol; 2022; 2408():37-69. PubMed ID: 35325415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can gene editing reduce postharvest waste and loss of fruit, vegetables, and ornamentals?
    Shipman EN; Yu J; Zhou J; Albornoz K; Beckles DM
    Hortic Res; 2021 Jan; 8(1):1. PubMed ID: 33384412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving Horticultural Crops via CRISPR/Cas9: Current Successes and Prospects.
    Bhatta BP; Malla S
    Plants (Basel); 2020 Oct; 9(10):. PubMed ID: 33066510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-editing technologies and their potential application in horticultural crop breeding.
    Xiong JS; Ding J; Li Y
    Hortic Res; 2015; 2():15019. PubMed ID: 26504570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.