These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 35447773)
21. Thiamethoxam resistance selected in the western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae): cross-resistance patterns, possible biochemical mechanisms and fitness costs analysis. Gao CF; Ma SZ; Shan CH; Wu SF Pestic Biochem Physiol; 2014 Sep; 114():90-6. PubMed ID: 25175655 [TBL] [Abstract][Full Text] [Related]
22. Proteomic Analysis Reveals Resistance Mechanism Against Chlorpyrifos in Frankliniella occidentalis (Thysanoptera: Thripidae). Yan DK; Hu M; Tang YX; Fan JQ J Econ Entomol; 2015 Aug; 108(4):2000-8. PubMed ID: 26470346 [TBL] [Abstract][Full Text] [Related]
23. Effects of elevated CO Fan Z; Qian L; Chen Y; Fan R; He S; Gao Y; Gui F Pest Manag Sci; 2022 Jan; 78(1):274-286. PubMed ID: 34480397 [TBL] [Abstract][Full Text] [Related]
24. Overview of Updated Control Tactics for Western Flower Thrips. Rodríguez D; Coy-Barrera E Insects; 2023 Jul; 14(7):. PubMed ID: 37504655 [No Abstract] [Full Text] [Related]
25. Foccα6, a truncated nAChR subunit, positively correlates with spinosad resistance in the western flower thrips, Frankliniella occidentalis (Pergande). Wan Y; Yuan G; He B; Xu B; Xie W; Wang S; Zhang Y; Wu Q; Zhou X Insect Biochem Mol Biol; 2018 Aug; 99():1-10. PubMed ID: 29753712 [TBL] [Abstract][Full Text] [Related]
26. Resistance development, stability, cross-resistance potential, biological fitness and biochemical mechanisms of spinetoram resistance in Thrips hawaiiensis (Thysanoptera: Thripidae). Fu B; Li Q; Qiu H; Tang L; Zeng D; Liu K; Gao Y Pest Manag Sci; 2018 Jul; 74(7):1564-1574. PubMed ID: 29427375 [TBL] [Abstract][Full Text] [Related]
27. [Sublethal effects of spinetoram and azadirachtin on development and reproduction of Frankliniella occidentalis (Pergande).]. Yang GM; Zhi JR; Li SX; Liu L Ying Yong Sheng Tai Xue Bao; 2016 Nov; 27(11):3698-3704. PubMed ID: 29696870 [TBL] [Abstract][Full Text] [Related]
28. Nuclear-mitochondrial barcoding exposes the global pest Western flower thrips (Thysanoptera: Thripidae) as two sympatric cryptic species in its native California. Rugman-Jones PF; Hoddle MS; Stouthamer R J Econ Entomol; 2010 Jun; 103(3):877-86. PubMed ID: 20568635 [TBL] [Abstract][Full Text] [Related]
29. Nicotinic acetylcholine receptor α6 subunit mutation (G275V) found in a spinosad-resistant strain of the flower thrips, Hiruta E; Aizawa M; Nakano A; Sonoda S J Pestic Sci; 2018 Nov; 43(4):272-276. PubMed ID: 30479549 [TBL] [Abstract][Full Text] [Related]
30. Efficacy of pesticide mixtures against the western flower thrips (Thysanoptera: Thripidae) under laboratory and greenhouse conditions. Willmott AL; Cloyd RA; Zhu KY J Econ Entomol; 2013 Feb; 106(1):247-56. PubMed ID: 23448038 [TBL] [Abstract][Full Text] [Related]
31. Frankliniella occidentalis (Pergande) integrated pest management programs for fruiting vegetables in Florida. Demirozer O; Tyler-Julian K; Funderburk J; Leppla N; Reitz S Pest Manag Sci; 2012 Dec; 68(12):1537-45. PubMed ID: 23109226 [TBL] [Abstract][Full Text] [Related]
32. Invasion biology, ecology, and management of Frankliniella occidentalis in China. Zhang B; Qian W; Qiao X; Xi Y; Wan F Arch Insect Biochem Physiol; 2019 Nov; 102(3):e21613. PubMed ID: 31549439 [TBL] [Abstract][Full Text] [Related]
33. The generalist predatory mite Anystis baccarum (Acari: Anystidae) as a new biocontrol agent for western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Saito T; Brownbridge M Exp Appl Acarol; 2022 Mar; 86(3):357-369. PubMed ID: 35192109 [TBL] [Abstract][Full Text] [Related]
34. A decade of a thrips invasion in China: lessons learned. Wu S; Tang L; Zhang X; Xing Z; Lei Z; Gao Y Ecotoxicology; 2018 Sep; 27(7):1032-1038. PubMed ID: 29027089 [TBL] [Abstract][Full Text] [Related]
35. Invasion genetics of the Western flower thrips in China: evidence for genetic bottleneck, hybridization and bridgehead effect. Yang XM; Sun JT; Xue XF; Li JB; Hong XY PLoS One; 2012; 7(4):e34567. PubMed ID: 22509325 [TBL] [Abstract][Full Text] [Related]
36. Low genetic diversity but strong population structure reflects multiple introductions of western flower thrips (Thysanoptera: Thripidae) into China followed by human-mediated spread. Cao LJ; Wang ZH; Gong YJ; Zhu L; Hoffmann AA; Wei SJ Evol Appl; 2017 Apr; 10(4):391-401. PubMed ID: 28352298 [TBL] [Abstract][Full Text] [Related]
37. Insecticide Rotation Programs with Entomopathogenic Organisms for Suppression of Western Flower Thrips (Thysanoptera: Thripidae) Adult Populations under Greenhouse Conditions. Kivett JM; Cloyd RA; Bello NM J Econ Entomol; 2015 Aug; 108(4):1936-46. PubMed ID: 26470338 [TBL] [Abstract][Full Text] [Related]
38. Impact of production system on development of insecticide resistance in Frankliniella occidentalis (Thysanoptera: Thripidae). Bielza P; Quinto V; Grávalos C; Fernández E; Abellán J J Econ Entomol; 2008 Oct; 101(5):1685-90. PubMed ID: 18950052 [TBL] [Abstract][Full Text] [Related]
39. Sublethal Effects of Imidacloprid on the Population Development of Western Flower Thrips Cao Y; Yang H; Li J; Wang C; Li C; Gao Y Insects; 2019 Jan; 10(1):. PubMed ID: 30609643 [TBL] [Abstract][Full Text] [Related]
40. Effect of Integrating the Entomopathogenic Fungus (Hypocreales: Cordycipitaceae) and the Rove Beetle (Coleoptera: Staphylinidae) in Suppressing Western Flower Thrips (Thysanoptera: Thripidae) Populations Under Greenhouse Conditions. Li Y; Cloyd RA; Bello NM J Econ Entomol; 2019 Sep; 112(5):2085-2093. PubMed ID: 31115452 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]