BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 35447999)

  • 1. Application of Real and Virtual Radial Arm Maze Task in Human.
    Palombi T; Mandolesi L; Alivernini F; Chirico A; Lucidi F
    Brain Sci; 2022 Mar; 12(4):. PubMed ID: 35447999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NavWell: A simplified virtual-reality platform for spatial navigation and memory experiments.
    Commins S; Duffin J; Chaves K; Leahy D; Corcoran K; Caffrey M; Keenan L; Finan D; Thornberry C
    Behav Res Methods; 2020 Jun; 52(3):1189-1207. PubMed ID: 31637666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial memory deficits in a virtual reality eight-arm radial maze in schizophrenia.
    Spieker EA; Astur RS; West JT; Griego JA; Rowland LM
    Schizophr Res; 2012 Mar; 135(1-3):84-9. PubMed ID: 22154760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial Learning and Memory Using a Radial Arm Maze with a Head-Mounted Display.
    Kim H; Park JY; Kim KK
    Psychiatry Investig; 2018 Oct; 15(10):935-944. PubMed ID: 30301309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peripersonal Visuospatial Abilities in Williams Syndrome Analyzed by a Table Radial Arm Maze Task.
    Foti F; Sorrentino P; Menghini D; Montuori S; Pesoli M; Turriziani P; Vicari S; Petrosini L; Mandolesi L
    Front Hum Neurosci; 2020; 14():254. PubMed ID: 32848661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two Immersive Virtual Reality Tasks for the Assessment of Spatial Orientation in Older Adults with and Without Cognitive Impairment: Concurrent Validity, Group Comparison, and Accuracy Results.
    da Costa RQM; Pompeu JE; Moretto E; Silva JM; Dos Santos MD; Nitrini R; Brucki SMD
    J Int Neuropsychol Soc; 2022 May; 28(5):460-472. PubMed ID: 34080532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a Virtual Floor Maze Test - Effects of Distal Visual Cues and Correlations With Executive Function in Healthy Adults.
    Martelli D; Prado A; Xia B; Verghese J; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2229-2236. PubMed ID: 31478863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A virtual reality platform for memory evaluation: Assessing effects of spatial strategies.
    Rodríguez MF; Ramirez Butavand D; Cifuentes MV; Bekinschtein P; Ballarini F; García Bauza C
    Behav Res Methods; 2022 Dec; 54(6):2707-2719. PubMed ID: 34918216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Could an Immersive Virtual Reality Training Improve Navigation Skills in Children with Cerebral Palsy? A Pilot Controlled Study.
    Nossa R; Gagliardi C; Panzeri D; Diella E; Maghini C; Genova C; Turconi AC; Biffi E
    J Clin Med; 2022 Oct; 11(20):. PubMed ID: 36294467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The potential of virtual reality for spatial navigation research across the adult lifespan.
    Diersch N; Wolbers T
    J Exp Biol; 2019 Feb; 222(Pt Suppl 1):. PubMed ID: 30728232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurorehabilitation of Spatial Memory Using Virtual Environments: A Systematic Review.
    Montana JI; Tuena C; Serino S; Cipresso P; Riva G
    J Clin Med; 2019 Sep; 8(10):. PubMed ID: 31547137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial memory deficits in a virtual radial arm maze in amnesic participants with hippocampal damage.
    Goodrich-Hunsaker NJ; Hopkins RO
    Behav Neurosci; 2010 Jun; 124(3):405-13. PubMed ID: 20528085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual Reality for Spatial Navigation.
    Jeung S; Hilton C; Berg T; Gehrke L; Gramann K
    Curr Top Behav Neurosci; 2023; 65():103-129. PubMed ID: 36512288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virtual Morris water maze: opportunities and challenges.
    Thornberry C; Cimadevilla JM; Commins S
    Rev Neurosci; 2021 Dec; 32(8):887-903. PubMed ID: 33838098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. "Tricking the Brain" Using Immersive Virtual Reality: Modifying the Self-Perception Over Embodied Avatar Influences Motor Cortical Excitability and Action Initiation.
    Buetler KA; Penalver-Andres J; Özen Ö; Ferriroli L; Müri RM; Cazzoli D; Marchal-Crespo L
    Front Hum Neurosci; 2021; 15():787487. PubMed ID: 35221950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How Much of What We Learn in Virtual Reality Transfers to Real-World Navigation?
    Hejtmanek L; Starrett M; Ferrer E; Ekstrom AD
    Multisens Res; 2020 Mar; 33(4-5):479-503. PubMed ID: 31972540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sex differences and correlations in a virtual Morris water task, a virtual radial arm maze, and mental rotation.
    Astur RS; Tropp J; Sava S; Constable RT; Markus EJ
    Behav Brain Res; 2004 May; 151(1-2):103-15. PubMed ID: 15084426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Testing Navigation in Real Space: Contributions to Understanding the Physiology and Pathology of Human Navigation Control.
    Schöberl F; Zwergal A; Brandt T
    Front Neural Circuits; 2020; 14():6. PubMed ID: 32210769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Threat-induced modulation of hippocampal and striatal memory systems during navigation of a virtual environment.
    Goodman J; McClay M; Dunsmoor JE
    Neurobiol Learn Mem; 2020 Feb; 168():107160. PubMed ID: 31918021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereosonic vision: Exploring visual-to-auditory sensory substitution mappings in an immersive virtual reality navigation paradigm.
    Massiceti D; Hicks SL; van Rheede JJ
    PLoS One; 2018; 13(7):e0199389. PubMed ID: 29975734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.