These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 35448240)

  • 1. Resources and Power Efficient FPGA Accelerators for Real-Time Image Classification.
    Kyriakos A; Papatheofanous EA; Bezaitis C; Reisis D
    J Imaging; 2022 Apr; 8(4):. PubMed ID: 35448240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Heterogeneous Hardware Accelerator for Image Classification in Embedded Systems.
    PĂ©rez I; Figueroa M
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33918668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distributed large-scale graph processing on FPGAs.
    Sahebi A; Barbone M; Procaccini M; Luk W; Gaydadjiev G; Giorgi R
    J Big Data; 2023; 10(1):95. PubMed ID: 37283690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of Flexible Hardware Accelerators for Image Convolutions and Transposed Convolutions.
    Sestito C; Spagnolo F; Perri S
    J Imaging; 2021 Oct; 7(10):. PubMed ID: 34677296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Lightweight Detection Method for Remote Sensing Images and Its Energy-Efficient Accelerator on Edge Devices.
    Yang R; Chen Z; Wang B; Guo Y; Hu L
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lightweight and Energy-Efficient Deep Learning Accelerator for Real-Time Object Detection on Edge Devices.
    Kim K; Jang SJ; Park J; Lee E; Lee SS
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Performance Acceleration of 2-D and 3-D CNNs on FPGAs Using Static Block Floating Point.
    Fan H; Liu S; Que Z; Niu X; Luk W
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):4473-4487. PubMed ID: 34644253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantization-Aware NN Layers with High-throughput FPGA Implementation for Edge AI.
    Pistellato M; Bergamasco F; Bigaglia G; Gasparetto A; Albarelli A; Boschetti M; Passerone R
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flare: An FPGA-Based Full Precision Low Power CNN Accelerator with Reconfigurable Structure.
    Xu Y; Luo J; Sun W
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acceleration of Deep Neural Network Training Using Field Programmable Gate Arrays.
    Tufa GT; Andargie FA; Bijalwan A
    Comput Intell Neurosci; 2022; 2022():8387364. PubMed ID: 36299439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hardware Trojan Attacks on the Reconfigurable Interconnections of Field-Programmable Gate Array-Based Convolutional Neural Network Accelerators and a Physically Unclonable Function-Based Countermeasure Detection Technique.
    Hou J; Liu Z; Yang Z; Yang C
    Micromachines (Basel); 2024 Jan; 15(1):. PubMed ID: 38276848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An OpenCL-Based FPGA Accelerator for Faster R-CNN.
    An J; Zhang D; Xu K; Wang D
    Entropy (Basel); 2022 Sep; 24(10):. PubMed ID: 37420365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Runtime Programmable and Memory Bandwidth Optimized FPGA-Based Coprocessor for Deep Convolutional Neural Network.
    Shah N; Chaudhari P; Varghese K
    IEEE Trans Neural Netw Learn Syst; 2018 Dec; 29(12):5922-5934. PubMed ID: 29993989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NullHop: A Flexible Convolutional Neural Network Accelerator Based on Sparse Representations of Feature Maps.
    Aimar A; Mostafa H; Calabrese E; Rios-Navarro A; Tapiador-Morales R; Lungu IA; Milde MB; Corradi F; Linares-Barranco A; Liu SC; Delbruck T
    IEEE Trans Neural Netw Learn Syst; 2019 Mar; 30(3):644-656. PubMed ID: 30047912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FPGA-based neural network accelerators for millimeter-wave radio-over-fiber systems.
    Lee J; He J; Wang K
    Opt Express; 2020 Apr; 28(9):13384-13400. PubMed ID: 32403814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A survey of field programmable gate array (FPGA)-based graph convolutional neural network accelerators: challenges and opportunities.
    Li S; Tao Y; Tang E; Xie T; Chen R
    PeerJ Comput Sci; 2022; 8():e1166. PubMed ID: 36532812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FPGA-Based Hybrid-Type Implementation of Quantized Neural Networks for Remote Sensing Applications.
    Wei X; Liu W; Chen L; Ma L; Chen H; Zhuang Y
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30813259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of Convolutional Neural Network Processor Based on FPGA Resource Multiplexing Architecture.
    Yan F; Zhang Z; Liu Y; Liu J
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-Time Inference With 2D Convolutional Neural Networks on Field Programmable Gate Arrays for High-Rate Particle Imaging Detectors.
    Jwa YJ; Di Guglielmo G; Arnold L; Carloni L; Karagiorgi G
    Front Artif Intell; 2022; 5():855184. PubMed ID: 35664508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerating GRAPPA reconstruction using SoC design for real-time cardiac MRI.
    Basit A; Inam O; Omer H
    Comput Biol Med; 2023 Jun; 160():107008. PubMed ID: 37159960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.