These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 35448335)
1. pH and Design on Albu PC; Tanczos SK; Ferencz Dinu A; Pîrțac A; Grosu AR; Pașcu D; Grosu VA; Bungău C; Nechifor AC Membranes (Basel); 2022 Mar; 12(4):. PubMed ID: 35448335 [TBL] [Abstract][Full Text] [Related]
2. Operational Limits of the Bulk Hybrid Liquid Membranes Based on Dispersion Systems. Ferencz Dinu A; Grosu AR; Al-Ani HNA; Nechifor AC; Tanczos SK; Albu PC; Crăciun ME; Ioan MR; Grosu VA; Nechifor G Membranes (Basel); 2022 Feb; 12(2):. PubMed ID: 35207110 [TBL] [Abstract][Full Text] [Related]
3. Separation of drug traces from water with particular membrane systems. Grote M; Haciosmanoglu B; Bataineh M; Nolte J J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(4):1039-53. PubMed ID: 15137718 [TBL] [Abstract][Full Text] [Related]
4. Emulsion Liquid Membranes Based on Os-NP/n-Decanol or n-Dodecanol Nanodispersions for p-Nitrophenol Reduction. Pîrțac A; Nechifor AC; Tanczos SK; Oprea OC; Grosu AR; Matei C; Grosu VA; Vasile BȘ; Albu PC; Nechifor G Molecules; 2024 Apr; 29(8):. PubMed ID: 38675662 [TBL] [Abstract][Full Text] [Related]
5. Transport and Separation of the Silver Ion with Nechifor G; Păncescu FM; Albu PC; Grosu AR; Oprea O; Tanczos SK; Bungău C; Grosu VA; Ioan MR; Nechifor AC Membranes (Basel); 2021 Nov; 11(12):. PubMed ID: 34940437 [TBL] [Abstract][Full Text] [Related]
6. Obtaining and Characterizing the Osmium Nanoparticles/ Nechifor AC; Goran A; Tanczos SK; Păncescu FM; Oprea OC; Grosu AR; Matei C; Grosu VA; Vasile BȘ; Albu PC Membranes (Basel); 2022 Oct; 12(10):. PubMed ID: 36295782 [TBL] [Abstract][Full Text] [Related]
7. Application of three phase hollow fiber based liquid phase microextraction (HF-LPME) for the simultaneous HPLC determination of phenol substituting compounds (alkyl-, chloro- and nitrophenols). Villar-Navarro M; Ramos-Payán M; Pérez-Bernal JL; Fernández-Torres R; Callejón-Mochón M; Ángel Bello-López M Talanta; 2012 Sep; 99():55-61. PubMed ID: 22967521 [TBL] [Abstract][Full Text] [Related]
8. Recovery of phenol from aqueous solution by supported liquid membrane using vegetable oils as liquid membrane. Venkateswaran P; Palanivelu K J Hazard Mater; 2006 Apr; 131(1-3):146-52. PubMed ID: 16236443 [TBL] [Abstract][Full Text] [Related]
9. Extraction of phenolic pollutants from industrial wastewater using a bulk ionic liquid membrane technique. Chasib KF; Mohsen AJ; Jisha KJ; Gardas RL Environ Technol; 2022 Mar; 43(7):1038-1049. PubMed ID: 32815798 [TBL] [Abstract][Full Text] [Related]
10. Extraction of phenol from aqueous solutions by means of supported liquid membrane (MLS) containing tri-n-octyl phosphine oxide (TOPO). Zidi C; Tayeb R; Dhahbi M J Hazard Mater; 2011 Oct; 194():62-8. PubMed ID: 21871728 [TBL] [Abstract][Full Text] [Related]
11. Studies of polyamines transport through liquid membranes with D2EHPA as a carrier. Dziarkowska K; Koprek K; Wieczorek PP J Sep Sci; 2008 Feb; 31(2):372-9. PubMed ID: 18183551 [TBL] [Abstract][Full Text] [Related]
12. Three- and Multi-Phase Extraction as a Tool for the Implementation of Liquid Membrane Separation Methods in Practice. Kostanyan AE; Belova VV; Voshkin AA Membranes (Basel); 2022 Sep; 12(10):. PubMed ID: 36295685 [TBL] [Abstract][Full Text] [Related]
13. [Preparation of a two-dimensional azine-linked covalent organic framework-coated capillary and its application to the separation of nitrophenol environmental endocrine disruptors by open-tubular capillary electrochromatography]. Zhao L; Lü W; Niu X; Pan C; Chen H; Chen X Se Pu; 2020 Sep; 38(9):1095-1101. PubMed ID: 34213276 [TBL] [Abstract][Full Text] [Related]
14. Carrier-facilitated bulk liquid membrane transport of iron(III)-siderophore complexes utilizing first coordination sphere recognition. Wirgau JI; Crumbliss AL Inorg Chem; 2003 Sep; 42(18):5762-70. PubMed ID: 12950227 [TBL] [Abstract][Full Text] [Related]
15. Removal of phenol and substituted phenols by newly developed emulsion liquid membrane process. Park Y; Skelland AH; Forney LJ; Kim JH Water Res; 2006 May; 40(9):1763-72. PubMed ID: 16618495 [TBL] [Abstract][Full Text] [Related]
16. Analytical Applications of Transport Through Bulk Liquid Membranes. Diaconu I; Ruse E; Aboul-Enein HY; Bunaciu AA Crit Rev Anal Chem; 2016 Jul; 46(4):332-41. PubMed ID: 26185963 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of a nano-sized chiral imprinted polymer and its use as an (S)-atenolol carrier in the bulk liquid membrane. Alizadeh T J Sep Sci; 2014 Jul; 37(14):1887-95. PubMed ID: 24771633 [TBL] [Abstract][Full Text] [Related]
18. Facilitated transport of penicillin G by bulk liquid membrane with TBP as carrier. Ren Z; Lv Y; Zhang W Appl Biochem Biotechnol; 2009 Feb; 152(2):286-94. PubMed ID: 18575985 [TBL] [Abstract][Full Text] [Related]
19. Removal of 4-Nitrophenol from Aqueous Solution by Using Polyphenylsulfone-Based Blend Membranes: Characterization and Performance. Yahya AA; Rashid KT; Ghadhban MY; Mousa NE; Majdi HS; Salih IK; Alsalhy QF Membranes (Basel); 2021 Feb; 11(3):. PubMed ID: 33673720 [TBL] [Abstract][Full Text] [Related]
20. Multiple functional ionic liquids based dispersive liquid-liquid microextraction combined with high performance chromatography for the determination of phenolic compounds in water samples. Sun JN; Chen J; Shi YP Talanta; 2014 Jul; 125():329-35. PubMed ID: 24840452 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]