BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35448489)

  • 1. Downregulation of Squalene Synthase Broadly Impacts Isoprenoid Biosynthesis in Guayule.
    Placido D; Dong N; Amer B; Dong C; Ponciano G; Kahlon T; Whalen M; Baidoo EEK; McMahan C
    Metabolites; 2022 Mar; 12(4):. PubMed ID: 35448489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of tocopherol biosynthesis genes in guayule (Parthenium argentatum) reduces rubber, resin and argentatins content in stem and leaf tissues.
    Ponciano G; Dong N; Dong C; Breksa A; Vilches A; Abutokaikah MT; McMahan C; Holguin FO
    Phytochemistry; 2024 Jun; 222():114060. PubMed ID: 38522560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome analysis of rubber biosynthesis in guayule (Parthenium argentatum gray).
    Stonebloom SH; Scheller HV
    BMC Plant Biol; 2019 Feb; 19(1):71. PubMed ID: 30755179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome and gene expression analysis in cold-acclimated guayule (Parthenium argentatum) rubber-producing tissue.
    Ponciano G; McMahan CM; Xie W; Lazo GR; Coffelt TA; Collins-Silva J; Nural-Taban A; Gollery M; Shintani DK; Whalen MC
    Phytochemistry; 2012 Jul; 79():57-66. PubMed ID: 22608127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Downregulation of a CYP74 Rubber Particle Protein Increases Natural Rubber Production in
    Placido DF; Dong N; Dong C; Cruz VMV; Dierig DA; Cahoon RE; Kang BG; Huynh T; Whalen M; Ponciano G; McMahan C
    Front Plant Sci; 2019; 10():760. PubMed ID: 31297121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning, characterization, and heterologous expression of cDNAs for farnesyl diphosphate synthase from the guayule rubber plant reveals that this prenyltransferase occurs in rubber particles.
    Pan Z; Herickhoff L; Backhaus RA
    Arch Biochem Biophys; 1996 Aug; 332(1):196-204. PubMed ID: 8806726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic and evolutionary analysis of the mechanisms by which P. argentatum, a rubber producing perennial, responds to drought.
    Nelson ADL; Ponciano G; McMahan C; Ilut DC; Pugh NA; Elshikha DE; Hunsaker DJ; Pauli D
    BMC Plant Biol; 2019 Nov; 19(1):494. PubMed ID: 31722667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isopentenyl Pyrophosphate cis-1,4-Polyisoprenyl Transferase from Guayule (Parthenium argentatum Gray).
    Madhavan S; Benedict CR
    Plant Physiol; 1984 Aug; 75(4):908-13. PubMed ID: 16663758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidation of rubber biosynthesis and accumulation in the rubber producing shrub, guayule (Parthenium argentatum Gray).
    Kajiura H; Suzuki N; Mouri H; Watanabe N; Nakazawa Y
    Planta; 2018 Feb; 247(2):513-526. PubMed ID: 29116401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photosynthesis and assimilate partitioning between carbohydrates and isoprenoid products in vegetatively active and dormant guayule: physiological and environmental constraints on rubber accumulation in a semiarid shrub.
    Salvucci ME; Barta C; Byers JA; Canarini A
    Physiol Plant; 2010 Dec; 140(4):368-79. PubMed ID: 20727105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Studies of the Protein Complexes Involving
    Lakusta AM; Kwon M; Kwon EG; Stonebloom S; Scheller HV; Ro DK
    Front Plant Sci; 2019; 10():165. PubMed ID: 30858856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel cDNA from Parthenium argentatum Gray enhances the rubber biosynthetic activity in vitro.
    Kim IJ; Ryu SB; Kwak YS; Kang H
    J Exp Bot; 2004 Feb; 55(396):377-85. PubMed ID: 14718497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNASeq analysis of drought-stressed guayule reveals the role of gene transcription for modulating rubber, resin, and carbohydrate synthesis.
    Dong C; Ponciano G; Huo N; Gu Y; Ilut D; McMahan C
    Sci Rep; 2021 Nov; 11(1):21610. PubMed ID: 34732788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating Guayule (
    Jara FM; García-Martínez MLM; López-Córcoles H; Carrión ME; Zalacain A; Carmona M
    Plants (Basel); 2024 Apr; 13(8):. PubMed ID: 38674500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impairment of Photorespiratory Carbon Flow into Rubber by the Inhibition of the Glycolate Pathway in Guayule (Parthenium argentatum Gray).
    Reddy AR; Suhasini M; Das VS
    Plant Physiol; 1987 Aug; 84(4):1447-50. PubMed ID: 16665625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of Squalene in
    Song Y; Guan Z; van Merkerk R; Pramastya H; Abdallah II; Setroikromo R; Quax WJ
    J Agric Food Chem; 2020 Apr; 68(15):4447-4455. PubMed ID: 32208656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering linear, branched-chain triterpene metabolism in monocots.
    Kempinski C; Jiang Z; Zinck G; Sato SJ; Ge Z; Clemente TE; Chappell J
    Plant Biotechnol J; 2019 Feb; 17(2):373-385. PubMed ID: 29979490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of resin extracted from guayule (
    Dehghanizadeh M; Cheng F; Jarvis JM; Holguin FO; Brewer CE
    Data Brief; 2020 Aug; 31():105989. PubMed ID: 32715039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnesium ion regulation of in vitro rubber biosynthesis by Parthenium argentatum Gray.
    da Costa BM; Keasling JD; McMahan CM; Cornish K
    Phytochemistry; 2006 Aug; 67(15):1621-8. PubMed ID: 16780905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural insights into the catalytic mechanism of human squalene synthase.
    Liu CI; Jeng WY; Chang WJ; Shih MF; Ko TP; Wang AH
    Acta Crystallogr D Biol Crystallogr; 2014 Feb; 70(Pt 2):231-41. PubMed ID: 24531458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.