These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Molecular Phylogenetic Relationships, Trichothecene Chemotype Diversity and Aggressiveness of Strains in a Global Collection of Amarasinghe C; Sharanowski B; Fernando WGD Toxins (Basel); 2019 May; 11(5):. PubMed ID: 31083494 [TBL] [Abstract][Full Text] [Related]
3. Regional and field-specific factors affect the composition of fusarium head blight pathogens in subtropical no-till wheat agroecosystem of Brazil. Del Ponte EM; Spolti P; Ward TJ; Gomes LB; Nicolli CP; Kuhnem PR; Silva CN; Tessmann DJ Phytopathology; 2015 Feb; 105(2):246-54. PubMed ID: 25121641 [TBL] [Abstract][Full Text] [Related]
4. Trichothecene genotypes and chemotypes in Fusarium graminearum strains isolated from wheat in Argentina. Reynoso MM; Ramirez ML; Torres AM; Chulze SN Int J Food Microbiol; 2011 Feb; 145(2-3):444-8. PubMed ID: 21320729 [TBL] [Abstract][Full Text] [Related]
5. Identification and trichothecene genotypes of Fusarium graminearum species complex from wheat in Taiwan. Wang CL; Cheng YH Bot Stud; 2017 Dec; 58(1):4. PubMed ID: 28510187 [TBL] [Abstract][Full Text] [Related]
6. Geographic distribution of phylogenetic species of the Fusarium graminearum species complex and their 8-ketotrichothecene chemotypes on wheat spikes in Iran. Abedi-Tizaki M; Zafari D Mycotoxin Res; 2017 Aug; 33(3):245-259. PubMed ID: 28612272 [TBL] [Abstract][Full Text] [Related]
7. Analysis of the Dong F; Li Y; Chen X; Wu J; Wang S; Zhang X; Ma G; Lee YW; Mokoena MP; Olaniran AO; Xu JH; Shi JR Plant Dis; 2021 Oct; 105(10):3269-3275. PubMed ID: 33847508 [TBL] [Abstract][Full Text] [Related]
8. Fitness Traits of Deoxynivalenol and Nivalenol-Producing Fusarium graminearum Species Complex Strains from Wheat. Nicolli CP; Machado FJ; Spolti P; Del Ponte EM Plant Dis; 2018 Jul; 102(7):1341-1347. PubMed ID: 30673560 [TBL] [Abstract][Full Text] [Related]
9. Substrate specificities of Fusarium biosynthetic enzymes explain the genetic basis of a mixed chemotype producing both deoxynivalenol and nivalenol-type trichothecenes. Maeda K; Tanaka Y; Matsuyama M; Sato M; Sadamatsu K; Suzuki T; Matsui K; Nakajima Y; Tokai T; Kanamaru K; Ohsato S; Kobayashi T; Fujimura M; Nishiuchi T; Takahashi-Ando N; Kimura M Int J Food Microbiol; 2020 May; 320():108532. PubMed ID: 32004825 [TBL] [Abstract][Full Text] [Related]
10. Molecular survey of trichothecene genotypes of Fusarium graminearum species complex from barley in southern Brazil. Astolfi P; dos Santos J; Schneider L; Gomes LB; Silva CN; Tessmann DJ; Del Ponte EM Int J Food Microbiol; 2011 Aug; 148(3):197-201. PubMed ID: 21665312 [TBL] [Abstract][Full Text] [Related]
11. Monitoring of Ji L; Li Q; Wang Y; Burgess LW; Sun M; Cao K; Kong L Toxins (Basel); 2019 Apr; 11(5):. PubMed ID: 31035348 [TBL] [Abstract][Full Text] [Related]
12. Natural deoxynivalenol occurrence and genotype and chemotype determination of a field population of the Fusarium graminearum complex associated with soybean in Argentina. Barros G; Zanon MS; Abod A; Oviedo MS; Ramirez ML; Reynoso MM; Torres A; Chulze S Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(2):293-303. PubMed ID: 21598133 [TBL] [Abstract][Full Text] [Related]
13. Regional differences in species composition and toxigenic potential among Fusarium head blight isolates from Uruguay indicate a risk of nivalenol contamination in new wheat production areas. Umpiérrez-Failache M; Garmendia G; Pereyra S; Rodríguez-Haralambides A; Ward TJ; Vero S Int J Food Microbiol; 2013 Aug; 166(1):135-40. PubMed ID: 23856007 [TBL] [Abstract][Full Text] [Related]
14. Analysis of Fusarium graminearum Species Complex from Wheat-Maize Rotation Regions in Henan (China). Hao JJ; Xie SN; Sun J; Yang GQ; Liu JZ; Xu F; Ru YY; Song YL Plant Dis; 2017 May; 101(5):720-725. PubMed ID: 30678561 [TBL] [Abstract][Full Text] [Related]
15. Genetic diversity in Fusarium graminearum from a major wheat-producing region of Argentina. Alvarez CL; Somma S; Proctor RH; Stea G; Mulè G; Logrieco AF; Pinto VF; Moretti A Toxins (Basel); 2011 Oct; 3(10):1294-309. PubMed ID: 22069697 [TBL] [Abstract][Full Text] [Related]
16. Characterization of Nivalenol-Producing Jang JY; Baek SG; Choi JH; Kim S; Kim J; Kim DW; Yun SH; Lee T Plant Pathol J; 2019 Dec; 35(6):543-552. PubMed ID: 31832035 [No Abstract] [Full Text] [Related]
17. Fusarium species, chemotype characterisation and trichothecene contamination of durum and soft wheat in an area of central Italy. Covarelli L; Beccari G; Prodi A; Generotti S; Etruschi F; Juan C; Ferrer E; Mañes J J Sci Food Agric; 2015 Feb; 95(3):540-51. PubMed ID: 24909776 [TBL] [Abstract][Full Text] [Related]
18. Genetic Diversity, Mycotoxin Profiles, and Population Structure of Ghimire B; Bahri BA; Martinez-Espinoza AD; Mergoum M; Buck JW Plant Dis; 2024 May; 108(5):1211-1222. PubMed ID: 37883636 [TBL] [Abstract][Full Text] [Related]
19. Analysis of Dong F; Zhang X; Xu JH; Shi JR; Lee YW; Chen XY; Li YP; Mokoena MP; Olaniran AO Plant Dis; 2020 Aug; 104(8):2138-2143. PubMed ID: 32539593 [TBL] [Abstract][Full Text] [Related]
20. Trichothecene genotypes and production profiles of Fusarium graminearum isolates obtained from barley cultivated in Argentina. Castañares E; Albuquerque DR; Dinolfo MI; Pinto VF; Patriarca A; Stenglein SA Int J Food Microbiol; 2014 Jun; 179():57-63. PubMed ID: 24727383 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]