BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 35449208)

  • 1. Red edge effect and chromoselective photocatalysis with amorphous covalent triazine-based frameworks.
    Zou Y; Abednatanzi S; Gohari Derakhshandeh P; Mazzanti S; Schüßlbauer CM; Cruz D; Van Der Voort P; Shi JW; Antonietti M; Guldi DM; Savateev A
    Nat Commun; 2022 Apr; 13(1):2171. PubMed ID: 35449208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromoselective Synthesis of Sulfonyl Chlorides and Sulfonamides with Potassium Poly(heptazine imide) Photocatalyst.
    Markushyna Y; Schüßlbauer CM; Ullrich T; Guldi DM; Antonietti M; Savateev A
    Angew Chem Int Ed Engl; 2021 Sep; 60(37):20543-20550. PubMed ID: 34223699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Nitrogen Atom Introduction on the Photocatalytic Hydrogen Evolution Activity of Covalent Triazine Frameworks: Experimental and Theoretical Study.
    Han X; Zhao F; Shang Q; Zhao J; Zhong X; Zhang J
    ChemSusChem; 2022 Sep; 15(18):e202200828. PubMed ID: 35869028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling Monomer Feeding Rate to Achieve Highly Crystalline Covalent Triazine Frameworks.
    Liu M; Jiang K; Ding X; Wang S; Zhang C; Liu J; Zhan Z; Cheng G; Li B; Chen H; Jin S; Tan B
    Adv Mater; 2019 May; 31(19):e1807865. PubMed ID: 30920709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystalline Covalent Triazine Frameworks by In Situ Oxidation of Alcohols to Aldehyde Monomers.
    Liu M; Huang Q; Wang S; Li Z; Li B; Jin S; Tan B
    Angew Chem Int Ed Engl; 2018 Sep; 57(37):11968-11972. PubMed ID: 30059185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Band Gap Tuning of Covalent Triazine-Based Frameworks through Iron Doping for Visible-Light-Driven Photocatalytic Hydrogen Evolution.
    Gao S; Zhang P; Huang G; Chen Q; Bi J; Wu L
    ChemSusChem; 2021 Sep; 14(18):3850-3857. PubMed ID: 34347379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Engineering of Two-Dimensional Covalent Organic Frameworks for Visible-Light-Driven Organic Transformations.
    Liu H; Li C; Li H; Ren Y; Chen J; Tang J; Yang Q
    ACS Appl Mater Interfaces; 2020 May; 12(18):20354-20365. PubMed ID: 32272831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Design of Covalent Triazine Frameworks with Anisotropic Charge Migration for Photocatalytic Hydrogen Production.
    Lan ZA; Chi X; Wu M; Zhang X; Chen X; Zhang G; Wang X
    Small; 2022 Apr; 18(16):e2200129. PubMed ID: 35261149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene Oxide-Assisted Covalent Triazine Framework for Boosting Photocatalytic H
    Liu C; Wang YC; Yang Q; Li XY; Yi F; Liu KW; Cao HM; Wang CJ; Yan HJ
    Chemistry; 2021 Sep; 27(51):13059-13066. PubMed ID: 34190368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling CsPbBr
    Wang Q; Wang J; Wang JC; Hu X; Bai Y; Zhong X; Li Z
    ChemSusChem; 2021 Feb; 14(4):1131-1139. PubMed ID: 33411408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of Covalent Triazine-Based Frameworks for Photocatalytic Hydrogen Generation.
    Xie J; Fang Z; Wang H
    Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Cobalt-Modified Covalent Triazine-Based Framework as an Efficient Cocatalyst for Visible-Light-Driven Photocatalytic CO
    Bi J; Xu B; Sun L; Huang H; Fang S; Li L; Wu L
    Chempluschem; 2019 Aug; 84(8):1149-1154. PubMed ID: 31943960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable Covalent Triazine-Based Frameworks (CTF-0) for Visible-Light-Driven Hydrogen and Oxygen Generation from Water Splitting.
    Kong D; Han X; Xie J; Ruan Q; Windle CD; Gadipelli S; Shen K; Bai Z; Guo Z; Tang J
    ACS Catal; 2019 Sep; 9(9):7697-7707. PubMed ID: 32064148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution on Phosphorus-Doped Covalent Triazine-Based Frameworks.
    Cheng Z; Fang W; Zhao T; Fang S; Bi J; Liang S; Li L; Yu Y; Wu L
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41415-41421. PubMed ID: 30383354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-Dimensional Crystalline Covalent Triazine Frameworks via a Polycondensation Approach.
    Sun R; Wang X; Wang X; Tan B
    Angew Chem Int Ed Engl; 2022 Apr; 61(15):e202117668. PubMed ID: 35038216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MoS
    Jiang Q; Sun L; Bi J; Liang S; Li L; Yu Y; Wu L
    ChemSusChem; 2018 Mar; 11(6):1108-1113. PubMed ID: 29405652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covalent Triazine-Based Frameworks as Visible Light Photocatalysts for the Splitting of Water.
    Bi J; Fang W; Li L; Wang J; Liang S; He Y; Liu M; Wu L
    Macromol Rapid Commun; 2015 Oct; 36(20):1799-805. PubMed ID: 26292975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finding the Sweet Spot of Photocatalysis─A Case Study Using Bipyridine-Based CTFs.
    Alves Fávaro M; Ditz D; Yang J; Bergwinkl S; Ghosh AC; Stammler M; Lorentz C; Roeser J; Quadrelli EA; Thomas A; Palkovits R; Canivet J; Wisser FM
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14182-14192. PubMed ID: 35293203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct synthesis of covalent triazine-based frameworks (CTFs) through aromatic nucleophilic substitution reactions.
    Chen T; Li WQ; Hu WB; Hu WJ; Liu YA; Yang H; Wen K
    RSC Adv; 2019 Jun; 9(31):18008-18012. PubMed ID: 35520569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid, Ordered Polymerization of Crystalline Semiconducting Covalent Triazine Frameworks.
    Sun T; Liang Y; Xu Y
    Angew Chem Int Ed Engl; 2022 Jan; 61(4):e202113926. PubMed ID: 34741378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.