These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 35449338)

  • 1. Autoclave and pulsed ultrasound cavitation based thermal activation of persulfate for regeneration of hydrogen titanate nanotubes as recyclable dye adsorbent.
    Mohammed S; Shajeelammal J; Asok A; Shukla S
    Environ Sci Pollut Res Int; 2022 Sep; 29(42):63304-63320. PubMed ID: 35449338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of methylene blue and azo reactive dyes from aqueous solution and textile effluent via modified pulsed low-frequency ultrasound cavitation process.
    Shajeelammal J; Mohammed S; Asok A; Shukla S
    Environ Sci Pollut Res Int; 2023 Mar; 30(11):29258-29280. PubMed ID: 36409415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrothermal synthesized magnetically separable mesostructured H
    Narayani H; Jose M; Sriram K; Shukla S
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):20304-20319. PubMed ID: 28197943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of bisphenol A and methylene blue through persulfate activation by calcinated α-MnO
    Mathew AT; Saravanakumar MP
    Environ Sci Pollut Res Int; 2023 Feb; 30(6):14497-14517. PubMed ID: 36152093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorptive separation and photocatalytic degradation of methylene blue dye on titanate nanotube powders prepared by hydrothermal process using metal Ti particles as a precursor.
    Hu K; Xiao X; Cao X; Hao R; Zuo X; Zhang X; Nan J
    J Hazard Mater; 2011 Aug; 192(2):514-20. PubMed ID: 21676544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of activated carbon from hydrochar by hydrothermal carbonization of chickpea stem: an application in methylene blue removal by RSM optimization.
    Genli N; Kutluay S; Baytar O; Şahin Ö
    Int J Phytoremediation; 2022; 24(1):88-100. PubMed ID: 34024213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical and chemical regeneration of zeolitic adsorbents for dye removal in wastewater treatment.
    Wang S; Li H; Xie S; Liu S; Xu L
    Chemosphere; 2006 Sep; 65(1):82-7. PubMed ID: 16581100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrothermal processing of hydrogen titanate/anatase-titania nanotubes and their application as strong dye-adsorbents.
    Harsha N; Ranya KR; Babitha KB; Shukla S; Biju S; Reddy ML; Warrier KG
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1175-87. PubMed ID: 21456156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dye-adsorption capacity of high surface-area hydrogen titanate nanosheets processed via modified hydrothermal method.
    Padinhattayil H; Augustine R; Shukla S
    J Nanosci Nanotechnol; 2013 Apr; 13(4):3035-45. PubMed ID: 23763198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of methylene blue dye on sodium alginate/polypyrrole nanotube composites.
    Heybet EN; Ugraskan V; Isik B; Yazici O
    Int J Biol Macromol; 2021 Dec; 193(Pt A):88-99. PubMed ID: 34688676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activated carbon-alginate beads impregnated with surfactant as sustainable adsorbent for efficient removal of methylene blue.
    Alamin NU; Khan AS; Nasrullah A; Iqbal J; Ullah Z; Din IU; Muhammad N; Khan SZ
    Int J Biol Macromol; 2021 Apr; 176():233-243. PubMed ID: 33549668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of dyes on carbon nanomaterials from aqueous solutions.
    Rodríguez A; Ovejero G; Sotelo JL; Mestanza M; García J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Oct; 45(12):1642-53. PubMed ID: 20730657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Efficient Methylene Blue Dye Removal by Nickel Molybdate Nanosorbent.
    Rakass S; Oudghiri Hassani H; Mohmoud A; Kooli F; Abboudi M; Assirey E; Al Wadaani F
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33806498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A sustainable process for adsorptive removal of methylene blue onto a food grade mucilage: kinetics, thermodynamics, and equilibrium evaluation.
    Mijinyawa AH; Durga G; Mishra A
    Int J Phytoremediation; 2019; 21(11):1122-1129. PubMed ID: 31056928
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Mathivanan M; Syed Abdul Rahman S; Vedachalam R; A SPK; G S; Karuppiah S
    Int J Phytoremediation; 2021; 23(9):982-1000. PubMed ID: 33539712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulose, clay and sodium alginate composites for the removal of methylene blue dye: Experimental and DFT studies.
    Kausar A; Rehman SU; Khalid F; Bonilla-Petriciolet A; Mendoza-Castillo DI; Bhatti HN; Ibrahim SM; Iqbal M
    Int J Biol Macromol; 2022 Jun; 209(Pt A):576-585. PubMed ID: 35405153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesoporous activated coconut shell-derived hydrochar prepared via hydrothermal carbonization-NaOH activation for methylene blue adsorption.
    Islam MA; Ahmed MJ; Khanday WA; Asif M; Hameed BH
    J Environ Manage; 2017 Dec; 203(Pt 1):237-244. PubMed ID: 28783020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron Molybdate Fe
    Mohmoud A; Rakass S; Oudghiri Hassani H; Kooli F; Abboudi M; Ben Aoun S
    Molecules; 2020 Nov; 25(21):. PubMed ID: 33153124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low Temperature Synthesized H
    Ota M; Hirota Y; Uchida Y; Sakamoto Y; Nishiyama N
    Langmuir; 2018 Jun; 34(23):6814-6819. PubMed ID: 29782797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of methylene blue onto poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) nanotubes: kinetics, isotherm and thermodynamics analysis.
    Chen Z; Zhang J; Fu J; Wang M; Wang X; Han R; Xu Q
    J Hazard Mater; 2014 May; 273():263-71. PubMed ID: 24751492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.