These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
380 related articles for article (PubMed ID: 35449580)
21. Genetical engineering for NK and T cell immunotherapy with CRISPR/Cas9 technology: Implications and challenges. Zhi L; Su X; Yin M; Zhang Z; Lu H; Niu Z; Guo C; Zhu W; Zhang X Cell Immunol; 2021 Nov; 369():104436. PubMed ID: 34500148 [TBL] [Abstract][Full Text] [Related]
22. Applications of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) as a Genetic Scalpel for the Treatment of Cancer: A Translational Narrative Review. Mondal R; Brahmbhatt N; Sandhu SK; Shah H; Vashi M; Gandhi SK; Patel P Cureus; 2023 Dec; 15(12):e50031. PubMed ID: 38186450 [TBL] [Abstract][Full Text] [Related]
23. A deep insight into CRISPR/Cas9 application in CAR-T cell-based tumor immunotherapies. Razeghian E; Nasution MKM; Rahman HS; Gardanova ZR; Abdelbasset WK; Aravindhan S; Bokov DO; Suksatan W; Nakhaei P; Shariatzadeh S; Marofi F; Yazdanifar M; Shamlou S; Motavalli R; Khiavi FM Stem Cell Res Ther; 2021 Jul; 12(1):428. PubMed ID: 34321099 [TBL] [Abstract][Full Text] [Related]
24. Clustered Regularly Interspaced Short Palindromic Repeats and Clustered Regularly Interspaced Short Palindromic Repeats-Associated Protein 9 System: Factors Affecting Precision Gene Editing Efficiency and Optimization Strategies. Li J; Tang C; Liang G; Tian H; Lai G; Wu Y; Liu S; Zhang W; Liu S; Shao H Hum Gene Ther; 2023 Dec; 34(23-24):1190-1203. PubMed ID: 37642232 [TBL] [Abstract][Full Text] [Related]
25. CRISPR/Cas9 application in cancer therapy: a pioneering genome editing tool. Shojaei Baghini S; Gardanova ZR; Abadi SAH; Zaman BA; İlhan A; Shomali N; Adili A; Moghaddar R; Yaseri AF Cell Mol Biol Lett; 2022 May; 27(1):35. PubMed ID: 35508982 [TBL] [Abstract][Full Text] [Related]
26. Advancements in CRISPR screens for the development of cancer immunotherapy strategies. Li YR; Lyu Z; Tian Y; Fang Y; Zhu Y; Chen Y; Yang L Mol Ther Oncolytics; 2023 Dec; 31():100733. PubMed ID: 37876793 [TBL] [Abstract][Full Text] [Related]
27. Gene editing technology to improve antitumor T-cell functions in adoptive immunotherapy. Ito Y; Inoue S; Kagoya Y Inflamm Regen; 2024 Mar; 44(1):13. PubMed ID: 38468282 [TBL] [Abstract][Full Text] [Related]
28. Recent advances and applications of CRISPR-Cas9 in cancer immunotherapy. Liu Z; Shi M; Ren Y; Xu H; Weng S; Ning W; Ge X; Liu L; Guo C; Duo M; Li L; Li J; Han X Mol Cancer; 2023 Feb; 22(1):35. PubMed ID: 36797756 [TBL] [Abstract][Full Text] [Related]
29. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Wang SW; Gao C; Zheng YM; Yi L; Lu JC; Huang XY; Cai JB; Zhang PF; Cui YH; Ke AW Mol Cancer; 2022 Feb; 21(1):57. PubMed ID: 35189910 [TBL] [Abstract][Full Text] [Related]
30. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9. Ren J; Zhao Y Protein Cell; 2017 Sep; 8(9):634-643. PubMed ID: 28434148 [TBL] [Abstract][Full Text] [Related]
31. Therapeutic potential of CRISPR/CAS9 genome modification in T cell-based immunotherapy of cancer. Kavousinia P; Ahmadi MH; Sadeghian H; Hosseini Bafghi M Cytotherapy; 2024 May; 26(5):436-443. PubMed ID: 38466263 [TBL] [Abstract][Full Text] [Related]
32. Optimization and validation of CAR transduction into human primary NK cells using CRISPR and AAV. Naeimi Kararoudi M; Likhite S; Elmas E; Yamamoto K; Schwartz M; Sorathia K; de Souza Fernandes Pereira M; Sezgin Y; Devine RD; Lyberger JM; Behbehani GK; Chakravarti N; Moriarity BS; Meyer K; Lee DA Cell Rep Methods; 2022 Jun; 2(6):100236. PubMed ID: 35784645 [TBL] [Abstract][Full Text] [Related]
33. CRISPR/Cas: From Tumor Gene Editing to T Cell-Based Immunotherapy of Cancer. Azangou-Khyavy M; Ghasemi M; Khanali J; Boroomand-Saboor M; Jamalkhah M; Soleimani M; Kiani J Front Immunol; 2020; 11():2062. PubMed ID: 33117331 [TBL] [Abstract][Full Text] [Related]
34. CRISPR/Cas9 for cancer treatment: technology, clinical applications and challenges. Cheng X; Fan S; Wen C; Du X Brief Funct Genomics; 2020 May; 19(3):209-214. PubMed ID: 32052006 [TBL] [Abstract][Full Text] [Related]
35. Applications and explorations of CRISPR/Cas9 in CAR T-cell therapy. Li C; Mei H; Hu Y Brief Funct Genomics; 2020 May; 19(3):175-182. PubMed ID: 31950135 [TBL] [Abstract][Full Text] [Related]
36. Unleashing the Therapeutic Potential of CAR-T Cell Therapy Using Gene-Editing Technologies. Jung IY; Lee J Mol Cells; 2018 Aug; 41(8):717-723. PubMed ID: 30110720 [TBL] [Abstract][Full Text] [Related]
37. Engineering nucleic acid chemistry for precise and controllable CRISPR/Cas9 genome editing. Cai W; Wang M Sci Bull (Beijing); 2019 Dec; 64(24):1841-1849. PubMed ID: 36659580 [TBL] [Abstract][Full Text] [Related]
39. CRISPR/Cas9 technology for advancements in cancer immunotherapy: from uncovering regulatory mechanisms to therapeutic applications. Feng X; Li Z; Liu Y; Chen D; Zhou Z Exp Hematol Oncol; 2024 Oct; 13(1):102. PubMed ID: 39427211 [TBL] [Abstract][Full Text] [Related]
40. Research into overcoming drug resistance in lung cancer treatment using CRISPR-Cas9 technology: a narrative review. Liu B; Wang Z; Gu M; Wang J; Tan J Transl Lung Cancer Res; 2024 Aug; 13(8):2067-2081. PubMed ID: 39263032 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]