These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A self-healing hydrogel and injectable cryogel of gelatin methacryloyl-polyurethane double network for 3D printing. Cheng QP; Hsu SH Acta Biomater; 2023 Jul; 164():124-138. PubMed ID: 37088162 [TBL] [Abstract][Full Text] [Related]
3. Three-Dimensional-Printable Thermo/Photo-Cross-Linked Methacrylated Chitosan-Gelatin Hydrogel Composites for Tissue Engineering. Osi AR; Zhang H; Chen J; Zhou Y; Wang R; Fu J; Müller-Buschbaum P; Zhong Q ACS Appl Mater Interfaces; 2021 May; 13(19):22902-22913. PubMed ID: 33960765 [TBL] [Abstract][Full Text] [Related]
4. Control of maleic acid-propylene diepoxide hydrogel for 3D printing application for flexible tissue engineering scaffold with high resolution by end capping and graft polymerization. Tran HN; Kim IG; Kim JH; Chung EJ; Noh I Biomater Res; 2022 Dec; 26(1):75. PubMed ID: 36494708 [TBL] [Abstract][Full Text] [Related]
5. On Low-Concentration Inks Formulated by Nanocellulose Assisted with Gelatin Methacrylate (GelMA) for 3D Printing toward Wound Healing Application. Xu W; Molino BZ; Cheng F; Molino PJ; Yue Z; Su D; Wang X; Willför S; Xu C; Wallace GG ACS Appl Mater Interfaces; 2019 Mar; 11(9):8838-8848. PubMed ID: 30741518 [TBL] [Abstract][Full Text] [Related]
6. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink. Garcia-Cruz MR; Postma A; Frith JE; Meagher L Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950 [TBL] [Abstract][Full Text] [Related]
7. Slide-Ring Structure-Based Double-Network Hydrogel with Enhanced Stretchability and Toughness for 3D-Bio-Printing and Its Potential Application as Artificial Small-Diameter Blood Vessels. Liu Y; Zhang Y; An Z; Zhao H; Zhang L; Cao Y; Mansoorianfar M; Liu X; Pei R ACS Appl Bio Mater; 2021 Dec; 4(12):8597-8606. PubMed ID: 35005952 [TBL] [Abstract][Full Text] [Related]
8. A high-performance GelMA-GelMA homogeneous double-network hydrogel assisted by 3D printing. Dong Y; Zhang M; Han D; Deng Z; Cao X; Tian J; Ye Q J Mater Chem B; 2022 May; 10(20):3906-3915. PubMed ID: 35471408 [TBL] [Abstract][Full Text] [Related]
9. Optimization of chitosan-gelatin-based 3D-printed scaffolds for tissue engineering and drug delivery applications. Palamidi A; Koumentakou I; Michopoulou A; Bikiaris DN; Terzopoulou Z Int J Pharm; 2024 Dec; 666():124776. PubMed ID: 39343329 [TBL] [Abstract][Full Text] [Related]
10. Gallol-derived ECM-mimetic adhesive bioinks exhibiting temporal shear-thinning and stabilization behavior. Shin M; Galarraga JH; Kwon MY; Lee H; Burdick JA Acta Biomater; 2019 Sep; 95():165-175. PubMed ID: 30366132 [TBL] [Abstract][Full Text] [Related]
11. Facile extrusion 3D printing of gelatine methacrylate/Laponite nanocomposite hydrogel with high concentration nanoclay for bone tissue regeneration. Dong L; Bu Z; Xiong Y; Zhang H; Fang J; Hu H; Liu Z; Li X Int J Biol Macromol; 2021 Oct; 188():72-81. PubMed ID: 34364938 [TBL] [Abstract][Full Text] [Related]
12. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967 [TBL] [Abstract][Full Text] [Related]
13. Printability of Double Network Alginate-Based Hydrogel for 3D Bio-Printed Complex Structures. Greco I; Miskovic V; Varon C; Marraffa C; Iorio CS Front Bioeng Biotechnol; 2022; 10():896166. PubMed ID: 35875487 [TBL] [Abstract][Full Text] [Related]
14. Three-dimensional extrusion bioprinting of single- and double-network hydrogels containing dynamic covalent crosslinks. Wang LL; Highley CB; Yeh YC; Galarraga JH; Uman S; Burdick JA J Biomed Mater Res A; 2018 Apr; 106(4):865-875. PubMed ID: 29314616 [TBL] [Abstract][Full Text] [Related]
15. Improving printability of hydrogel-based bio-inks for thermal inkjet bioprinting applications Suntornnond R; Ng WL; Huang X; Yeow CHE; Yeong WY J Mater Chem B; 2022 Aug; 10(31):5989-6000. PubMed ID: 35876487 [TBL] [Abstract][Full Text] [Related]
16. Three-Dimensional Printable Hydrogel Using a Hyaluronic Acid/Sodium Alginate Bio-Ink. Lee SJ; Seok JM; Lee JH; Lee J; Kim WD; Park SA Polymers (Basel); 2021 Mar; 13(5):. PubMed ID: 33807639 [TBL] [Abstract][Full Text] [Related]
17. Development and optimisation of hydroxyapatite-polyethylene glycol diacrylate hydrogel inks for 3D printing of bone tissue engineered scaffolds. Rajabi M; Cabral JD; Saunderson S; Gould M; Ali MA Biomed Mater; 2023 Sep; 18(6):. PubMed ID: 37699400 [TBL] [Abstract][Full Text] [Related]
18. Polyurethane-gelatin methacryloyl hybrid ink for 3D printing of biocompatible and tough vascular networks. Huang Y; Zhao H; Wang X; Liu X; Gao Z; Bai H; Lv F; Gu Q; Wang S Chem Commun (Camb); 2022 Jun; 58(49):6894-6897. PubMed ID: 35638877 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of 3D-Printed Interpenetrating Hydrogel Scaffolds for Promoting Chondrogenic Differentiation. Guan J; Yuan FZ; Mao ZM; Zhu HL; Lin L; Chen HH; Yu JK Polymers (Basel); 2021 Jun; 13(13):. PubMed ID: 34209853 [TBL] [Abstract][Full Text] [Related]
20. Swelling Behaviors of 3D Printed Hydrogel and Hydrogel-Microcarrier Composite Scaffolds. Bittner SM; Pearce HA; Hogan KJ; Smoak MM; Guo JL; Melchiorri AJ; Scott DW; Mikos AG Tissue Eng Part A; 2021 Jun; 27(11-12):665-678. PubMed ID: 33470161 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]