These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 35450279)

  • 1. Combined multiple transcriptional repression mechanisms generate ultrasensitivity and oscillations.
    Jeong EM; Song YM; Kim JK
    Interface Focus; 2022 Jun; 12(3):20210084. PubMed ID: 35450279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein sequestration versus Hill-type repression in circadian clock models.
    Kim JK
    IET Syst Biol; 2016 Aug; 10(4):125-35. PubMed ID: 27444022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammalian circadian clock: the roles of transcriptional repression and delay.
    Minami Y; Ode KL; Ueda HR
    Handb Exp Pharmacol; 2013; (217):359-77. PubMed ID: 23604487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanism of the repressive phase of the mammalian circadian clock.
    Cao X; Yang Y; Selby CP; Liu Z; Sancar A
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33443219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mechanisms that regulate the coupled period of the mammalian circadian clock.
    Kim JK; Kilpatrick ZP; Bennett MR; Josić K
    Biophys J; 2014 May; 106(9):2071-81. PubMed ID: 24806939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mechanism for robust circadian timekeeping via stoichiometric balance.
    Kim JK; Forger DB
    Mol Syst Biol; 2012; 8():630. PubMed ID: 23212247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Periodicity, repression, and the molecular architecture of the mammalian circadian clock.
    Rosensweig C; Green CB
    Eur J Neurosci; 2020 Jan; 51(1):139-165. PubMed ID: 30402960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional autoregulation by phosphorylated and non-phosphorylated KaiC in cyanobacterial circadian rhythms.
    Takigawa-Imamura H; Mochizuki A
    J Theor Biol; 2006 Jul; 241(2):178-92. PubMed ID: 16387328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of the repression mechanisms in circadian clocks.
    Tyler J; Lu Y; Dunlap J; Forger DB
    Genome Biol; 2022 Jan; 23(1):17. PubMed ID: 35012616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryptochromes impair phosphorylation of transcriptional activators in the clock: a general mechanism for circadian repression.
    Dardente H; Fortier EE; Martineau V; Cermakian N
    Biochem J; 2007 Mar; 402(3):525-36. PubMed ID: 17115977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasensitivity part III: cascades, bistable switches, and oscillators.
    Ferrell JE; Ha SH
    Trends Biochem Sci; 2014 Dec; 39(12):612-8. PubMed ID: 25456048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional regulation via nuclear receptor crosstalk required for the Drosophila circadian clock.
    Jaumouillé E; Machado Almeida P; Stähli P; Koch R; Nagoshi E
    Curr Biol; 2015 Jun; 25(11):1502-8. PubMed ID: 26004759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Requirement for NF-κB in maintenance of molecular and behavioral circadian rhythms in mice.
    Hong HK; Maury E; Ramsey KM; Perelis M; Marcheva B; Omura C; Kobayashi Y; Guttridge DC; Barish GD; Bass J
    Genes Dev; 2018 Nov; 32(21-22):1367-1379. PubMed ID: 30366905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A circadian clock-regulated toggle switch explains AtGRP7 and AtGRP8 oscillations in Arabidopsis thaliana.
    Schmal C; Reimann P; Staiger D
    PLoS Comput Biol; 2013; 9(3):e1002986. PubMed ID: 23555221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of DNA binding sites and slow unbinding kinetics in titration-based oscillators.
    Karapetyan S; Buchler NE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062712. PubMed ID: 26764732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetics of circadian rhythms in Mammalian model organisms.
    Lowrey PL; Takahashi JS
    Adv Genet; 2011; 74():175-230. PubMed ID: 21924978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual modes of CLOCK:BMAL1 inhibition mediated by Cryptochrome and Period proteins in the mammalian circadian clock.
    Ye R; Selby CP; Chiou YY; Ozkan-Dagliyan I; Gaddameedhi S; Sancar A
    Genes Dev; 2014 Sep; 28(18):1989-98. PubMed ID: 25228643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proof-by-synthesis of the transcriptional logic of mammalian circadian clocks.
    Ukai-Tadenuma M; Kasukawa T; Ueda HR
    Nat Cell Biol; 2008 Oct; 10(10):1154-63. PubMed ID: 18806789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the Autonomy of the
    Sabado V; Vienne L; Nagoshi E
    Front Cell Neurosci; 2017; 11():317. PubMed ID: 29075180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional and post-transcriptional regulation of the circadian clock of cyanobacteria and Neurospora.
    Brunner M; Schafmeier T
    Genes Dev; 2006 May; 20(9):1061-74. PubMed ID: 16651653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.