BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35450480)

  • 1. Growth, biochemical, and antioxidant response of pot marigold (
    Varshney A; Dahiya P; Mohan S
    Int J Phytoremediation; 2023; 25(1):115-124. PubMed ID: 35450480
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Khan WU; Yasin NA; Ahmad SR; Nazir A; Naeem K; Nadeem QUA; Nawaz S; Ijaz M; Tahir A
    Int J Phytoremediation; 2023; 25(12):1656-1668. PubMed ID: 36855239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficacy of multi-walled carbon nanotubes in regulating growth performance, total glutathione and redox state of Calendula officinalis L. cultivated on Pb and Cd polluted soil.
    Sharifi P; Bidabadi SS; Zaid A; Abdel Latef AAH
    Ecotoxicol Environ Saf; 2021 Apr; 213():112051. PubMed ID: 33601169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoremediation potential of naturally growing weed plants grown on fly ash-amended soil for restoration of fly ash deposit.
    Panda D; Mandal L; Barik J
    Int J Phytoremediation; 2020; 22(11):1195-1203. PubMed ID: 32356449
    [No Abstract]   [Full Text] [Related]  

  • 5. Biodiversity variability and metal accumulation strategies in plants spontaneously inhibiting fly ash lagoon, India.
    Mukhopadhyay S; Rana V; Kumar A; Maiti SK
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):22990-23005. PubMed ID: 28819831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth performance, metal accumulation and biochemical responses of Palak (Beta vulgaris L. var. Allgreen H-1) grown on soil amended with sewage sludge-fly ash mixtures.
    Sharma B; Kothari R; Singh RP
    Environ Sci Pollut Res Int; 2018 May; 25(13):12619-12640. PubMed ID: 29468393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: effect on antioxidants.
    Sinha S; Gupta AK
    Chemosphere; 2005 Dec; 61(8):1204-14. PubMed ID: 16226293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth and physiological response of lemongrass (Cymbopogon citratus (D.C.) Stapf.) under different levels of fly ash-amended soil.
    Panda D; Panda D; Padhan B; Biswas M
    Int J Phytoremediation; 2018 May; 20(6):538-544. PubMed ID: 29688052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coal fly ash application as an eco-friendly approach for modulating the growth, yield, and biochemical constituents of Withania somnifera L. plants.
    Ansari MS; Ahmad G; Khan AA; Mohamed HI
    Environ Sci Pollut Res Int; 2023 Aug; 30(37):87958-87980. PubMed ID: 37432571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modified diatomite for soil remediation and its implications for heavy metal absorption in Calendula officinalis.
    Samani M; Ahlawat YK; Golchin A; Alikhani HA; Baybordi A; Mishra S
    BMC Plant Biol; 2024 May; 24(1):357. PubMed ID: 38698319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cadmium Partitioning, Physiological and Oxidative Stress Responses in Marigold (Calendula calypso) Grown on Contaminated Soil: Implications for Phytoremediation.
    Farooq A; Nadeem M; Abbas G; Shabbir A; Khalid MS; Javeed HMR; Saeed MF; Akram A; Younis A; Akhtar G
    Bull Environ Contam Toxicol; 2020 Aug; 105(2):270-276. PubMed ID: 32661664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Arbuscular Mycorrhizal Fungi On Yield and Phytoremediation Performance of Pot Marigold (Calendula officinalis L.) Under Heavy Metals Stress.
    Tabrizi L; Mohammadi S; Delshad M; Moteshare Zadeh B
    Int J Phytoremediation; 2015; 17(12):1244-52. PubMed ID: 26237494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of EDTA, citric acid, and tartaric acid application on growth, phytoremediation potential, and antioxidant response of
    Saffari VR; Saffari M
    Int J Phytoremediation; 2020; 22(11):1204-1214. PubMed ID: 32329354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper phytoremediation potential of Calandula officinalis L. and the role of antioxidant enzymes in metal tolerance.
    Goswami S; Das S
    Ecotoxicol Environ Saf; 2016 Apr; 126():211-218. PubMed ID: 26773830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of different treatments of fly ash and mining soil on growth and antioxidant protection of Indian wild rice.
    Bisoi SS; Mishra SS; Barik J; Panda D
    Int J Phytoremediation; 2017 May; 19(5):446-452. PubMed ID: 27739878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of isolated microbe and treated wastewater for enhanced growth of Jatropha curcas for bioremediation of fly ash amended soil.
    Jain S; Tembhurkar AR
    Environ Pollut; 2023 Jan; 316(Pt 1):120523. PubMed ID: 36326558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of medicinal plants colonizing abundantly on metal-enriched fly ash deposits: phytoremediation prospective.
    Yadav S; Pandey VC; Singh L
    Int J Phytoremediation; 2024; 26(9):1518-1525. PubMed ID: 38563239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioaccumulation of nutrient elements from fly ash-amended soil in Jatropha curcas L.: a biofuel crop.
    Chaudhary DR; Ghosh A
    Environ Monit Assess; 2013 Aug; 185(8):6705-12. PubMed ID: 23318887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytotoxicity level and accumulation ability of pot marigold (
    Karimi Ansari B; Koksal N
    Int J Phytoremediation; 2023; 25(9):1225-1233. PubMed ID: 36433762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Jatropha curcas: a potential crop for phytoremediation of coal fly ash.
    Jamil S; Abhilash PC; Singh N; Sharma PN
    J Hazard Mater; 2009 Dec; 172(1):269-75. PubMed ID: 19640648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.