These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35450627)

  • 1. High-purity cellulose production from birch wood by γ-valerolactone/water fractionation and IONCELL-P process.
    Shokri S; Hedjazi S; Lê HQ; Abdulkhani A; Sixta H
    Carbohydr Polym; 2022 Jul; 288():119364. PubMed ID: 35450627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential of hot water extraction of birch wood to produce high-purity dissolving pulp after alkaline pulping.
    Borrega M; Tolonen LK; Bardot F; Testova L; Sixta H
    Bioresour Technol; 2013 May; 135():665-71. PubMed ID: 23260272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of hemicellulose and cellulose from wood pulp by means of ionic liquid/cosolvent systems.
    Froschauer C; Hummel M; Iakovlev M; Roselli A; Schottenberger H; Sixta H
    Biomacromolecules; 2013 Jun; 14(6):1741-50. PubMed ID: 23651266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gamma-valerolactone biorefinery: Catalyzed birch fractionation and valorization of pulping streams with solvent recovery.
    Granatier M; Lê HQ; Ma Y; Rissanen M; Schlapp-Hackl I; Diment D; Zaykovskaya A; Pokki JP; Balakshin M; Louhi-Kultanen M; Alopaeus V; Sixta H
    Heliyon; 2023 Jun; 9(6):e17423. PubMed ID: 37408933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced biorefinery based on the fractionation of biomass in γ-valerolactone and water.
    Fang W; Sixta H
    ChemSusChem; 2015 Jan; 8(1):73-6. PubMed ID: 25370304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the role of water in the interaction of ionic liquids with wood polymers.
    Roselli A; Hummel M; Vartiainen J; Nieminen K; Sixta H
    Carbohydr Polym; 2017 Jul; 168():121-128. PubMed ID: 28457431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel process for efficient utilization of bamboo fiber resource in dissolving pulp production by fiber fractionation: Laboratory study and mill trials.
    Liu Y; Fu C; Liu L; Wang K; Wu T; Wu J; Zhang J; Xie Z; Xu Y; Duan C; Ni Y; He Z
    Bioresour Technol; 2024 Mar; 395():130400. PubMed ID: 38286169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Birch wood pre-hydrolysis vs pulp post-hydrolysis for the production of xylan-based compounds and cellulose for viscose application.
    Borrega M; Larsson PT; Ahvenainen P; Ceccherini S; Maloney T; Rautkari L; Sixta H
    Carbohydr Polym; 2018 Jun; 190():212-221. PubMed ID: 29628240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous bench scale production of dissolving grade pulp and valuable hemicelluloses from softwood kraft pulp by ionic liquid extraction.
    Laine C; Asikainen S; Talja R; Stépán A; Sixta H; Harlin A
    Carbohydr Polym; 2016 Jan; 136():402-8. PubMed ID: 26572370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose fractionation with IONCELL-P.
    Stepan AM; Monshizadeh A; Hummel M; Roselli A; Sixta H
    Carbohydr Polym; 2016 Oct; 150():99-106. PubMed ID: 27312618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Enzymatic Depolymerization of Cellulose and Hemicelluloses on the Direct Dissolution of Prehydrolysis Kraft Dissolving Pulp.
    Ceccherini S; Ståhl M; Sawada D; Hummel M; Maloney TC
    Biomacromolecules; 2021 Nov; 22(11):4805-4813. PubMed ID: 34672541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic Fibre Modification During Production of Dissolving Wood Pulp for Regenerated Cellulosic Materials.
    Loureiro PEG; Cadete SMS; Tokin R; Evtuguin DV; Lund H; Johansen KS
    Front Plant Sci; 2021; 12():717776. PubMed ID: 34650579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination of alkaline and enzymatic treatments as a process for upgrading sisal paper-grade pulp to dissolving-grade pulp.
    Ibarra D; Köpcke V; Larsson PT; Jääskeläinen AS; Ek M
    Bioresour Technol; 2010 Oct; 101(19):7416-23. PubMed ID: 20493684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in residual lignin properties between Betula verrucosa and Eucalyptus urograndis kraft pulps.
    Hänninen TA; Kontturi E; Isogai A; Vuorinen T
    Biopolymers; 2008 Oct; 89(10):889-93. PubMed ID: 18488987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulp properties and their influence on enzymatic degradability.
    Gehmayr V; Sixta H
    Biomacromolecules; 2012 Mar; 13(3):645-51. PubMed ID: 22300287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biorefinery scheme to fractionate bamboo into high-grade dissolving pulp and ethanol.
    Yuan Z; Wen Y; Kapu NS; Beatson R; Mark Martinez D
    Biotechnol Biofuels; 2017; 10():38. PubMed ID: 28203276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and Morphological Analysis of Cellulose Pulp Produced from the Fractionation of
    Trevorah RM; Huynh T; Brkljača R; Othman MZ
    ACS Omega; 2021 Feb; 6(6):4126-4136. PubMed ID: 33644535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation Treatments Using Hydrogen Peroxide to Convert Paper-Grade Eucalyptus Kraft Pulp into Dissolving-Grade Pulp.
    Vera-Loor A; Rigou P; Mortha G; Marlin N
    Molecules; 2023 Dec; 28(23):. PubMed ID: 38067656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioethanol potential of Eucalyptus obliqua sawdust using gamma-valerolactone fractionation.
    Trevorah RM; Huynh T; Vancov T; Othman MZ
    Bioresour Technol; 2018 Feb; 250():673-682. PubMed ID: 29220812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the molar masses of hemicelluloses from wood and pulps employing size exclusion chromatography and matrix-assisted laser desorption ionization time-of-flight mass spectrometry.
    Jacobs A; Dahlman O
    Biomacromolecules; 2001; 2(3):894-905. PubMed ID: 11710047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.