These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 35450638)
1. Tough all-polysaccharide hydrogels with uniaxially/planarly oriented structure. Xue X; Song G; Chang C Carbohydr Polym; 2022 Jul; 288():119376. PubMed ID: 35450638 [TBL] [Abstract][Full Text] [Related]
2. Dual Physically Cross-Linked Nanocomposite Hydrogels Reinforced by Tunicate Cellulose Nanocrystals with High Toughness and Good Self-Recoverability. Zhang T; Zuo T; Hu D; Chang C ACS Appl Mater Interfaces; 2017 Jul; 9(28):24230-24237. PubMed ID: 28650140 [TBL] [Abstract][Full Text] [Related]
4. Hydroxypropyl cellulose enhanced ionic conductive double-network hydrogels. Gan S; Bai S; Chen C; Zou Y; Sun Y; Zhao J; Rong J Int J Biol Macromol; 2021 Jun; 181():418-425. PubMed ID: 33781814 [TBL] [Abstract][Full Text] [Related]
5. Anisotropic chitosan/tunicate cellulose nanocrystals hydrogel with tunable interference color and acid-responsiveness. Zheng Y; Zhang L; Duan B Carbohydr Polym; 2022 Nov; 295():119866. PubMed ID: 35988983 [TBL] [Abstract][Full Text] [Related]
6. A self-reinforcing strategy enables the intimate interface for anisotropic alginate composite hydrogels. Zhao X; Ding M; Xu C; Zhang X; Liu S; Lin X; Wang L; Xia Y Carbohydr Polym; 2021 Jan; 251():117054. PubMed ID: 33142606 [TBL] [Abstract][Full Text] [Related]
7. Highly antifouling, biocompatible and tough double network hydrogel based on carboxybetaine-type zwitterionic polymer and alginate. Zhang J; Chen L; Chen L; Qian S; Mou X; Feng J Carbohydr Polym; 2021 Apr; 257():117627. PubMed ID: 33541653 [TBL] [Abstract][Full Text] [Related]
8. Strong and tough nanofibrous hydrogel composites based on biomimetic principles. Tonsomboon K; Butcher AL; Oyen ML Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():220-227. PubMed ID: 28024580 [TBL] [Abstract][Full Text] [Related]
9. Construction of strong and tough carboxymethyl cellulose-based oriented hydrogels by phase separation. Zhong L; Dong Z; Liu Y; Chen C; Xu Z Int J Biol Macromol; 2023 Jan; 225():79-89. PubMed ID: 36460246 [TBL] [Abstract][Full Text] [Related]
10. High-Strength and Tough Cellulose Hydrogels Chemically Dual Cross-Linked by Using Low- and High-Molecular-Weight Cross-Linkers. Ye D; Chang C; Zhang L Biomacromolecules; 2019 May; 20(5):1989-1995. PubMed ID: 30908016 [TBL] [Abstract][Full Text] [Related]
11. Biocompatible Double-Membrane Hydrogels from Cationic Cellulose Nanocrystals and Anionic Alginate as Complexing Drugs Codelivery. Lin N; Gèze A; Wouessidjewe D; Huang J; Dufresne A ACS Appl Mater Interfaces; 2016 Mar; 8(11):6880-9. PubMed ID: 26925765 [TBL] [Abstract][Full Text] [Related]
12. Stretchable, tough, self-recoverable, and cytocompatible chitosan/cellulose nanocrystals/polyacrylamide hybrid hydrogels. Huang W; Wang Y; McMullen LM; McDermott MT; Deng H; Du Y; Chen L; Zhang L Carbohydr Polym; 2019 Oct; 222():114977. PubMed ID: 31320104 [TBL] [Abstract][Full Text] [Related]
13. A biaxially stretched cellulose film prepared from ionic liquid solution. Wan J; Diao H; Yu J; Song G; Zhang J Carbohydr Polym; 2021 May; 260():117816. PubMed ID: 33712160 [TBL] [Abstract][Full Text] [Related]
14. Ultrastiff, Tough, and Healable Ionic-Hydrogen Bond Cross-Linked Hydrogels and Their Uses as Building Blocks To Construct Complex Hydrogel Structures. Liang Y; Xue J; Du B; Nie J ACS Appl Mater Interfaces; 2019 Feb; 11(5):5441-5454. PubMed ID: 30624049 [TBL] [Abstract][Full Text] [Related]
15. Stiff and Tough Hydrogels Prepared Through Integration of Ionic Cross-linking and Enzymatic Mineralization. Guo J; Shu X; Deng H; Zhang J; Wang Y; Meng G; He J; Wu F Acta Biomater; 2022 Sep; 149():220-232. PubMed ID: 35688402 [TBL] [Abstract][Full Text] [Related]
16. Bacterial cellulose reinforced double-network hydrogels for shape memory strand. Hua J; Liu C; Ng PF; Fei B Carbohydr Polym; 2021 May; 259():117737. PubMed ID: 33673998 [TBL] [Abstract][Full Text] [Related]
17. Tough and Stretchable Dual Ionically Cross-Linked Hydrogel with High Conductivity and Fast Recovery Property for High-Performance Flexible Sensors. Liang Y; Ye L; Sun X; Lv Q; Liang H ACS Appl Mater Interfaces; 2020 Jan; 12(1):1577-1587. PubMed ID: 31794185 [TBL] [Abstract][Full Text] [Related]
18. 3D printing of a tough double-network hydrogel and its use as a scaffold to construct a tissue-like hydrogel composite. Du C; Hu J; Wu X; Shi H; Yu HC; Qian J; Yin J; Gao C; Wu ZL; Zheng Q J Mater Chem B; 2022 Jan; 10(3):468-476. PubMed ID: 34982091 [TBL] [Abstract][Full Text] [Related]
19. Green, tough, and heat-resistant: A GDL-induced strategy for starch-alginate hydrogels. Su CY; Li D; Sun W; Wang LJ; Wang Y Food Chem; 2024 Aug; 449():139188. PubMed ID: 38579652 [TBL] [Abstract][Full Text] [Related]
20. Cooking-Inspired Versatile Design of an Ultrastrong and Tough Polysaccharide Hydrogel through Programmed Supramolecular Interactions. Wang L; Zhang X; Xia Y; Zhao X; Xue Z; Sui K; Dong X; Wang D Adv Mater; 2019 Oct; 31(41):e1902381. PubMed ID: 31441144 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]