These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 35450658)

  • 1. Porous cellulose composite aerogel films with super piezoelectric properties for energy harvesting.
    Song Y; Wu T; Bao J; Xu M; Yang Q; Zhu L; Shi Z; Hu GH; Xiong C
    Carbohydr Polym; 2022 Jul; 288():119407. PubMed ID: 35450658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TOCN/copper calcium titanate composite aerogel films as high-performance triboelectric materials for energy harvesting.
    Song Y; Liu M; Bao J; Hu Y; Xu M; Yang Z; Yang Q; Cai H; Xiong C; Shi Z
    Carbohydr Polym; 2022 Dec; 298():120111. PubMed ID: 36241285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Flexible Poly(vinylidene fluoride-trifluorethylene) Piezoelectric Nanogenerators by SnSe Nanosheet Doping and Solvent Treatment.
    Zhai W; Nie J; Zhu L
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32278-32285. PubMed ID: 34190532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible cellulose-based piezoelectric composite membrane involving PVDF and BaTiO
    Li M; Jiang B; Cao S; Song X; Zhang Y; Huang L; Yuan Q
    RSC Adv; 2023 Mar; 13(15):10204-10214. PubMed ID: 37006353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porosity Modulated High-Performance Piezoelectric Nanogenerator Based on Organic/Inorganic Nanomaterials for Self-Powered Structural Health Monitoring.
    Rana MM; Khan AA; Huang G; Mei N; Saritas R; Wen B; Zhang S; Voss P; Abdel-Rahman E; Leonenko Z; Islam S; Ban D
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47503-47512. PubMed ID: 32969216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review of Zinc Oxide Piezoelectric Nanogenerators: Piezoelectric Properties, Composite Structures and Power Output.
    Bhadwal N; Ben Mrad R; Behdinan K
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance Improvement and Application of Degradable Poly-l-lactide and Yttrium-Doped Zinc Oxide Hybrid Films for Energy Harvesting.
    Che X; Fan Y; Su Y; Gong Y; Guo Q; Feng Y; Hu D; Wang W; Fan H
    ACS Appl Mater Interfaces; 2024 Jul; 16(26):33517-33526. PubMed ID: 38885354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wearable Piezoelectric Nanogenerators Based on Core-Shell Ga-PZT@GaO
    Zeng S; Zhang M; Jiang L; Wang Z; Gu H; Xiong J; Du Y; Ren L
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):7990-8000. PubMed ID: 35107968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitigating the Negative Piezoelectricity in Organic/Inorganic Hybrid Materials for High-performance Piezoelectric Nanogenerators.
    Guo H; Li L; Wang F; Kim SW; Sun H
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):34733-34741. PubMed ID: 35867959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boosting the Output Performance of the MoS
    Sohn A; Hwang HJ; Zhao P; Kim W; Jung JH; Kang L; Choi D; Kim SW
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):1317-1325. PubMed ID: 38118048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A vanadium-doped ZnO nanosheets-polymer composite for flexible piezoelectric nanogenerators.
    Shin SH; Kwon YH; Lee MH; Jung JY; Seol JH; Nah J
    Nanoscale; 2016 Jan; 8(3):1314-21. PubMed ID: 26681551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial Nanocellulose/MoS
    Ferreira-Neto EP; Ullah S; da Silva TCA; Domeneguetti RR; Perissinotto AP; de Vicente FS; Rodrigues-Filho UP; Ribeiro SJL
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41627-41643. PubMed ID: 32809794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progress in Piezoelectric Nanogenerators Based on PVDF Composite Films.
    Wang Y; Zhu L; Du C
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lead-Free Bi
    Qin W; Zhou P; Qi Y; Zhang T
    Micromachines (Basel); 2020 Oct; 11(11):. PubMed ID: 33126645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LiTaO
    Manchi P; Graham SA; Patnam H; Alluri NR; Kim SJ; Yu JS
    ACS Appl Mater Interfaces; 2021 Oct; 13(39):46526-46536. PubMed ID: 34546725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attachable piezoelectric nanogenerators using collision-induced strain of vertically grown hollow MoS
    Han JK; Kang MA; Park CY; Lee M; Myung S; Song W; Lee SS; Lim J; An KS
    Nanotechnology; 2019 Aug; 30(33):335402. PubMed ID: 31026842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research in porous structure of cellulose aerogel made from cellulose nanofibrils.
    Gong C; Ni JP; Tian C; Su ZH
    Int J Biol Macromol; 2021 Mar; 172():573-579. PubMed ID: 33454335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(vinylidene fluoride)-Stabilized Black γ-Phase CsPbI
    Zhu W; Khan AA; Rana MM; Gautheron-Bernard R; Tanguy NR; Yan N; Turban P; Ababou-Girard S; Ban D
    ACS Omega; 2022 Mar; 7(12):10559-10567. PubMed ID: 35382301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning ZnO-based piezoelectric nanogenerator efficiency through n-ZnO/p-NiO bulk interfacing.
    Mahapatra A; Ajimsha RS; Deepak D; Misra P
    Sci Rep; 2024 May; 14(1):11871. PubMed ID: 38789586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superior piezoelectric performance of chemically synthesized transition metal dichalcogenide heterostructures for self-powered flexible piezoelectric nanogenerator.
    Bhattacharya D; Mukherjee S; Mitra RK; Ray SK
    Nanotechnology; 2023 Aug; 34(43):. PubMed ID: 37478833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.