BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 35450825)

  • 1. Muscle active force-length curve explained by an electrophysical model of interfilament spacing.
    Rockenfeller R; Günther M; Hooper SL
    Biophys J; 2022 May; 121(10):1823-1855. PubMed ID: 35450825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sarcomere length versus interfilament spacing as determinants of cardiac myofilament Ca2+ sensitivity and Ca2+ binding.
    Fuchs F; Wang YP
    J Mol Cell Cardiol; 1996 Jul; 28(7):1375-83. PubMed ID: 8841926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inter-filament spacing mediates calcium binding to troponin: A simple geometric-mechanistic model explains the shift of force-length maxima with muscle activation.
    Rockenfeller R; Günther M
    J Theor Biol; 2018 Oct; 454():240-252. PubMed ID: 29902474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sarcomere length-dependent Ca2+ activation in skinned rabbit psoas muscle fibers: coordinated regulation of thin filament cooperative activation and passive force.
    Fukuda N; Inoue T; Yamane M; Terui T; Kobirumaki F; Ohtsuki I; Ishiwata S; Kurihara S
    J Physiol Sci; 2011 Nov; 61(6):515-23. PubMed ID: 21901640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the lateral filament spacing of skinned muscle fibres when cross-bridges attach.
    Matsubara I; Goldman YE; Simmons RM
    J Mol Biol; 1984 Feb; 173(1):15-33. PubMed ID: 6608003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thick-filament strain and interfilament spacing in passive muscle: effect of titin-based passive tension.
    Irving T; Wu Y; Bekyarova T; Farman GP; Fukuda N; Granzier H
    Biophys J; 2011 Mar; 100(6):1499-508. PubMed ID: 21402032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osmotic compression of skinned cardiac and skeletal muscle bundles: effects on force generation, Ca2+ sensitivity and Ca2+ binding.
    Wang YP; Fuchs F
    J Mol Cell Cardiol; 1995 Jun; 27(6):1235-44. PubMed ID: 8531205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Filament lattice of frog striated muscle. Radial forces, lattice stability, and filament compression in the A-band of relaxed and rigor muscle.
    Millman BM; Irving TC
    Biophys J; 1988 Sep; 54(3):437-47. PubMed ID: 3264728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stress-dependent activation of myosin in the heart requires thin filament activation and thick filament mechanosensing.
    Park-Holohan SJ; Brunello E; Kampourakis T; Rees M; Irving M; Fusi L
    Proc Natl Acad Sci U S A; 2021 Apr; 118(16):. PubMed ID: 33850019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of thin filament length on the force-sarcomere length relation of skeletal muscle.
    Granzier HL; Akster HA; Ter Keurs HE
    Am J Physiol; 1991 May; 260(5 Pt 1):C1060-70. PubMed ID: 2035614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sarcomere lattice geometry influences cooperative myosin binding in muscle.
    Tanner BC; Daniel TL; Regnier M
    PLoS Comput Biol; 2007 Jul; 3(7):e115. PubMed ID: 17630823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myosin MgADP Release Rate Decreases as Sarcomere Length Increases in Skinned Rat Soleus Muscle Fibers.
    Fenwick AJ; Leighton SR; Tanner BCW
    Biophys J; 2016 Nov; 111(9):2011-2023. PubMed ID: 27806282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sarcomere length non-uniformities dictate force production along the descending limb of the force-length relation.
    Haeger R; de Souza Leite F; Rassier DE
    Proc Biol Sci; 2020 Oct; 287(1937):20202133. PubMed ID: 33109011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thin filament length regulation in striated muscle sarcomeres: pointed-end dynamics go beyond a nebulin ruler.
    Littlefield RS; Fowler VM
    Semin Cell Dev Biol; 2008 Dec; 19(6):511-9. PubMed ID: 18793739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The length-tension curve in muscle depends on lattice spacing.
    Williams CD; Salcedo MK; Irving TC; Regnier M; Daniel TL
    Proc Biol Sci; 2013 Sep; 280(1766):20130697. PubMed ID: 23843386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulatory mechanism of length-dependent activation in skinned porcine ventricular muscle: role of thin filament cooperative activation in the Frank-Starling relation.
    Terui T; Shimamoto Y; Yamane M; Kobirumaki F; Ohtsuki I; Ishiwata S; Kurihara S; Fukuda N
    J Gen Physiol; 2010 Oct; 136(4):469-82. PubMed ID: 20876361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myofilament spacing and force generation in intact frog muscle fibres.
    Bagni MA; Cecchi G; Colomo F
    J Physiol; 1990 Nov; 430():61-75. PubMed ID: 2086776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The spatial distribution of thin filament activation influences force development and myosin activity in computational models of muscle contraction.
    Fenwick AJ; Wood AM; Tanner BCW
    Arch Biochem Biophys; 2021 May; 703():108855. PubMed ID: 33781771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nebulin and titin modulate cross-bridge cycling and length-dependent calcium sensitivity.
    Mijailovich SM; Stojanovic B; Nedic D; Svicevic M; Geeves MA; Irving TC; Granzier HL
    J Gen Physiol; 2019 May; 151(5):680-704. PubMed ID: 30948421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.