These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 35451305)
21. Single-Atom Doping and High-Valence State for Synergistic Enhancement of NiO Electrocatalytic Water Oxidation. Liu M; Ji Y; Li Y; An P; Zhang J; Yan J; Liu SF Small; 2021 Sep; 17(36):e2102448. PubMed ID: 34323372 [TBL] [Abstract][Full Text] [Related]
22. In-situ spectroscopic observation of dynamic-coupling oxygen on atomically dispersed iridium electrocatalyst for acidic water oxidation. Su H; Zhou W; Zhou W; Li Y; Zheng L; Zhang H; Liu M; Zhang X; Sun X; Xu Y; Hu F; Zhang J; Hu T; Liu Q; Wei S Nat Commun; 2021 Oct; 12(1):6118. PubMed ID: 34675195 [TBL] [Abstract][Full Text] [Related]
23. Hollandite Structure K(x≈0.25)IrO2 Catalyst with Highly Efficient Oxygen Evolution Reaction. Sun W; Song Y; Gong XQ; Cao LM; Yang J ACS Appl Mater Interfaces; 2016 Jan; 8(1):820-6. PubMed ID: 26694881 [TBL] [Abstract][Full Text] [Related]
24. Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions. Lee Y; Suntivich J; May KJ; Perry EE; Shao-Horn Y J Phys Chem Lett; 2012 Feb; 3(3):399-404. PubMed ID: 26285858 [TBL] [Abstract][Full Text] [Related]
25. Iridium Single Atoms Coupling with Oxygen Vacancies Boosts Oxygen Evolution Reaction in Acid Media. Yin J; Jin J; Lu M; Huang B; Zhang H; Peng Y; Xi P; Yan CH J Am Chem Soc; 2020 Oct; 142(43):18378-18386. PubMed ID: 32955265 [TBL] [Abstract][Full Text] [Related]
26. Operando Spectroscopic Identification of Active Sites in NiFe Prussian Blue Analogues as Electrocatalysts: Activation of Oxygen Atoms for Oxygen Evolution Reaction. Su X; Wang Y; Zhou J; Gu S; Li J; Zhang S J Am Chem Soc; 2018 Sep; 140(36):11286-11292. PubMed ID: 30111100 [TBL] [Abstract][Full Text] [Related]
27. Arousing the Reactive Fe Sites in Pyrite (FeS Tan Z; Sharma L; Kakkar R; Meng T; Jiang Y; Cao M Inorg Chem; 2019 Jun; 58(11):7615-7627. PubMed ID: 31074996 [TBL] [Abstract][Full Text] [Related]
28. Theoretical Prediction and Experimental Verification of IrO Han X; Mou T; Islam A; Kang S; Chang Q; Xie Z; Zhao X; Sasaki K; Rodriguez JA; Liu P; Chen JG J Am Chem Soc; 2024 Jun; ():. PubMed ID: 38859684 [TBL] [Abstract][Full Text] [Related]
30. Immobilization of Oxyanions on the Reconstructed Heterostructure Evolved from a Bimetallic Oxysulfide for the Promotion of Oxygen Evolution Reaction. Yu K; Yang H; Zhang H; Huang H; Wang Z; Kang Z; Liu Y; Menezes PW; Chen Z Nanomicro Lett; 2023 Jul; 15(1):186. PubMed ID: 37515724 [TBL] [Abstract][Full Text] [Related]
31. Laser-Ablation-Produced Cobalt Nickel Phosphate with High-Valence Nickel Ions as an Active Catalyst for the Oxygen Evolution Reaction. Sun X; Wang J; Yin Y; Wang H; Li S; Liu H; Mao J; Du X Chemistry; 2020 Mar; 26(13):2793-2797. PubMed ID: 31840329 [TBL] [Abstract][Full Text] [Related]
32. Single-Step Electrospun Ir/IrO Moon S; Cho YB; Yu A; Kim MH; Lee C; Lee Y ACS Appl Mater Interfaces; 2019 Jan; 11(2):1979-1987. PubMed ID: 30582793 [TBL] [Abstract][Full Text] [Related]
33. Accelerated Durability Test for High-Surface-Area Oxyhydroxide Nickel Supported on Raney Nickel as Catalyst for the Alkaline Oxygen Evolution Reaction. Delgado D; Bizzotto F; Zana A; Arenz M Chemphyschem; 2019 Nov; 20(22):3147-3153. PubMed ID: 31173447 [TBL] [Abstract][Full Text] [Related]
34. Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. Gao M; Sheng W; Zhuang Z; Fang Q; Gu S; Jiang J; Yan Y J Am Chem Soc; 2014 May; 136(19):7077-84. PubMed ID: 24761994 [TBL] [Abstract][Full Text] [Related]
35. Structure Effects of 2D Materials on α-Nickel Hydroxide for Oxygen Evolution Reaction. Luan C; Liu G; Liu Y; Yu L; Wang Y; Xiao Y; Qiao H; Dai X; Zhang X ACS Nano; 2018 Apr; 12(4):3875-3885. PubMed ID: 29630354 [TBL] [Abstract][Full Text] [Related]
36. Enhancement of Oxygen Evolution Activity of Nickel Oxyhydroxide by Electrolyte Alkali Cations. Garcia AC; Touzalin T; Nieuwland C; Perini N; Koper MTM Angew Chem Int Ed Engl; 2019 Sep; 58(37):12999-13003. PubMed ID: 31250499 [TBL] [Abstract][Full Text] [Related]
37. Nonmetallic Active Sites on Nickel Phosphide in Oxygen Evolution Reaction. Zhang P; Qiu H; Li H; He J; Xu Y; Wang R Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407247 [TBL] [Abstract][Full Text] [Related]
38. Electrochemical Preparation of Crystalline Hydrous Iridium Oxide and Its Use in Oxygen Evolution Catalysis. Qi J; Zeng H; Gu L; Liu Z; Zeng Y; Hong E; Lai Y; Liu T; Yang C ACS Appl Mater Interfaces; 2023 Mar; 15(12):15269-15278. PubMed ID: 36930828 [TBL] [Abstract][Full Text] [Related]
39. Fast Modulation of d-Band Holes Quantity in the Early Reaction Stages for Boosting Acidic Oxygen Evolution. Zhang X; Yang C; Gong C; Liu M; Zhou W; Su H; Yu F; Hu F; Liu Q; Wei S Angew Chem Int Ed Engl; 2023 Aug; 62(33):e202308082. PubMed ID: 37358875 [TBL] [Abstract][Full Text] [Related]
40. Improved Electrocatalytic Activity and Stability by Single Iridium Atoms on Iron-based Layered Double Hydroxides for Oxygen Evolution. Cao J; Mou T; Mei B; Yao P; Han C; Gong X; Song P; Jiang Z; Frauenheim T; Xiao J; Xu W Angew Chem Int Ed Engl; 2023 Oct; 62(43):e202310973. PubMed ID: 37667678 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]