These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 35451435)

  • 1. Relativistic nonorthogonal configuration interaction: application to L
    Grofe A; Li X
    Phys Chem Chem Phys; 2022 May; 24(18):10745-10756. PubMed ID: 35451435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling L
    Kasper JM; Lestrange PJ; Stetina TF; Li X
    J Chem Theory Comput; 2018 Apr; 14(4):1998-2006. PubMed ID: 29561613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized nonorthogonal matrix elements: Unifying Wick's theorem and the Slater-Condon rules.
    Burton HGA
    J Chem Phys; 2021 Apr; 154(14):144109. PubMed ID: 33858143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relativistic Orbital-Optimized Density Functional Theory for Accurate Core-Level Spectroscopy.
    Cunha LA; Hait D; Kang R; Mao Y; Head-Gordon M
    J Phys Chem Lett; 2022 Apr; 13(15):3438-3449. PubMed ID: 35412838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relativistic Effects in Modeling the Ligand K-Edge X-ray Absorption Near-Edge Structure of Uranium Complexes.
    Kasper JM; Li X; Kozimor SA; Batista ER; Yang P
    J Chem Theory Comput; 2022 Apr; 18(4):2171-2179. PubMed ID: 35274960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of L
    Maganas D; Kowalska JK; Van Stappen C; DeBeer S; Neese F
    J Chem Phys; 2020 Mar; 152(11):114107. PubMed ID: 32199419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spin-Orbit Coupling Constants in Atoms and Ions of Transition Elements: Comparison of Effective Core Potentials, Model Core Potentials, and All-Electron Methods.
    Koseki S; Matsunaga N; Asada T; Schmidt MW; Gordon MS
    J Phys Chem A; 2019 Mar; 123(12):2325-2339. PubMed ID: 30817150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting Near Edge X-ray Absorption Spectra with the Spin-Free Exact-Two-Component Hamiltonian and Orthogonality Constrained Density Functional Theory.
    Verma P; Derricotte WD; Evangelista FA
    J Chem Theory Comput; 2016 Jan; 12(1):144-56. PubMed ID: 26584082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selected Nonorthogonal Configuration Interaction with Compressed Single and Double Excitations.
    Sun C; Gao F; Scuseria GE
    J Chem Theory Comput; 2024 May; 20(9):3741-3748. PubMed ID: 38640423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling L
    Stetina TF; Kasper JM; Li X
    J Chem Phys; 2019 Jun; 150(23):234103. PubMed ID: 31228914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced Common Molecular Orbital Basis for Nonorthogonal Configuration Interaction.
    Kathir RK; de Graaf C; Broer R; Havenith RWA
    J Chem Theory Comput; 2020 May; 16(5):2941-2951. PubMed ID: 32279493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relativistic Kramers-Unrestricted Exact-Two-Component Density Matrix Renormalization Group.
    Hoyer CE; Hu H; Lu L; Knecht S; Li X
    J Phys Chem A; 2022 Aug; 126(30):5011-5020. PubMed ID: 35881436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relativistic Real-Time Time-Dependent Equation-of-Motion Coupled-Cluster.
    Koulias LN; Williams-Young DB; Nascimento DR; DePrince AE; Li X
    J Chem Theory Comput; 2019 Dec; 15(12):6617-6624. PubMed ID: 31618584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A combined DFT and restricted open-shell configuration interaction method including spin-orbit coupling: application to transition metal L-edge X-ray absorption spectroscopy.
    Roemelt M; Maganas D; DeBeer S; Neese F
    J Chem Phys; 2013 May; 138(20):204101. PubMed ID: 23742448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear-electronic orbital nonorthogonal configuration interaction approach.
    Skone JH; Pak MV; Hammes-Schiffer S
    J Chem Phys; 2005 Oct; 123(13):134108. PubMed ID: 16223276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaching Full Correlation through Nonorthogonal Configuration Interaction: A Second-Order Perturbative Approach.
    Burton HGA; Thom AJW
    J Chem Theory Comput; 2020 Sep; 16(9):5586-5600. PubMed ID: 32786910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining the spin-separated exact two-component relativistic Hamiltonian with the equation-of-motion coupled-cluster method for the treatment of spin-orbit splittings of light and heavy elements.
    Cao Z; Li Z; Wang F; Liu W
    Phys Chem Chem Phys; 2017 Feb; 19(5):3713-3721. PubMed ID: 28097277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalized nonorthogonal matrix elements. II: Extension to arbitrary excitations.
    Burton HGA
    J Chem Phys; 2022 Nov; 157(20):204109. PubMed ID: 36456247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-Component Multireference Restricted Active Space Configuration Interaction for the Computation of L-Edge X-ray Absorption Spectra.
    Jenkins AJ; Hu H; Lu L; Frisch MJ; Li X
    J Chem Theory Comput; 2022 Jan; 18(1):141-150. PubMed ID: 34908414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localized Spin Rotations: A Size-Consistent Approach to Nonorthogonal Configuration Interaction.
    Lee N; Thom AJW
    J Chem Theory Comput; 2022 Feb; 18(2):710-722. PubMed ID: 35001619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.