These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 35451528)

  • 1. Data-Driven Materials Innovation and Applications.
    Wang Z; Sun Z; Yin H; Liu X; Wang J; Zhao H; Pang CH; Wu T; Li S; Yin Z; Yu XF
    Adv Mater; 2022 Sep; 34(36):e2104113. PubMed ID: 35451528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data-Driven Strategies for Accelerated Materials Design.
    Pollice R; Dos Passos Gomes G; Aldeghi M; Hickman RJ; Krenn M; Lavigne C; Lindner-D'Addario M; Nigam A; Ser CT; Yao Z; Aspuru-Guzik A
    Acc Chem Res; 2021 Feb; 54(4):849-860. PubMed ID: 33528245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Design-to-Device Pipeline for Data-Driven Materials Discovery.
    Cole JM
    Acc Chem Res; 2020 Mar; 53(3):599-610. PubMed ID: 32096410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data-Driven Materials Science: Status, Challenges, and Perspectives.
    Himanen L; Geurts A; Foster AS; Rinke P
    Adv Sci (Weinh); 2019 Nov; 6(21):1900808. PubMed ID: 31728276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digital Innovation Enabled Nanomaterial Manufacturing; Machine Learning Strategies and Green Perspectives.
    Konstantopoulos G; Koumoulos EP; Charitidis CA
    Nanomaterials (Basel); 2022 Aug; 12(15):. PubMed ID: 35957077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomaterialomics: Data science-driven pathways to develop fourth-generation biomaterials.
    Basu B; Gowtham NH; Xiao Y; Kalidindi SR; Leong KW
    Acta Biomater; 2022 Apr; 143():1-25. PubMed ID: 35202854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning Meets with Metal Organic Frameworks for Gas Storage and Separation.
    Altintas C; Altundal OF; Keskin S; Yildirim R
    J Chem Inf Model; 2021 May; 61(5):2131-2146. PubMed ID: 33914526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning and data science in soft materials engineering.
    Ferguson AL
    J Phys Condens Matter; 2018 Jan; 30(4):043002. PubMed ID: 29111979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning and big data provide crucial insight for future biomaterials discovery and research.
    Kerner J; Dogan A; von Recum H
    Acta Biomater; 2021 Aug; 130():54-65. PubMed ID: 34087445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine Learning-Driven Biomaterials Evolution.
    Suwardi A; Wang F; Xue K; Han MY; Teo P; Wang P; Wang S; Liu Y; Ye E; Li Z; Loh XJ
    Adv Mater; 2022 Jan; 34(1):e2102703. PubMed ID: 34617632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review on utilizing machine learning technology in the fields of electronic emergency triage and patient priority systems in telemedicine: Coherent taxonomy, motivations, open research challenges and recommendations for intelligent future work.
    Salman OH; Taha Z; Alsabah MQ; Hussein YS; Mohammed AS; Aal-Nouman M
    Comput Methods Programs Biomed; 2021 Sep; 209():106357. PubMed ID: 34438223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Material Evolution with Nanotechnology, Nanoarchitectonics, and Materials Informatics: What will be the Next Paradigm Shift in Nanoporous Materials?
    Chaikittisilp W; Yamauchi Y; Ariga K
    Adv Mater; 2022 Feb; 34(7):e2107212. PubMed ID: 34637159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual Materials Intelligence for Design and Discovery of Advanced Electrocatalysts.
    Malek A; Eslamibidgoli MJ; Mokhtari M; Wang Q; Eikerling MH; Malek K
    Chemphyschem; 2019 Nov; 20(22):2946-2955. PubMed ID: 31587461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting Molecular Photochemistry Using Machine-Learning-Enhanced Quantum Dynamics Simulations.
    Richings GW; Habershon S
    Acc Chem Res; 2022 Jan; 55(2):209-220. PubMed ID: 34982533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliably Modeling the Mechanical Stability of Rigid and Flexible Metal-Organic Frameworks.
    Rogge SMJ; Waroquier M; Van Speybroeck V
    Acc Chem Res; 2018 Jan; 51(1):138-148. PubMed ID: 29155552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning-driven new material discovery.
    Cai J; Chu X; Xu K; Li H; Wei J
    Nanoscale Adv; 2020 Aug; 2(8):3115-3130. PubMed ID: 36134280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data-driven machine learning model for the prediction of oxygen vacancy formation energy of metal oxide materials.
    Wan Z; Wang QD; Liu D; Liang J
    Phys Chem Chem Phys; 2021 Jul; 23(29):15675-15684. PubMed ID: 34269780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skin-Inspired Electronics: An Emerging Paradigm.
    Wang S; Oh JY; Xu J; Tran H; Bao Z
    Acc Chem Res; 2018 May; 51(5):1033-1045. PubMed ID: 29693379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Material innovation and mechanics design for substrates and encapsulation of flexible electronics: a review.
    Li H; Ma Y; Huang Y
    Mater Horiz; 2021 Feb; 8(2):383-400. PubMed ID: 34821261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine-Learning-Assisted De Novo Design of Organic Molecules and Polymers: Opportunities and Challenges.
    Chen G; Shen Z; Iyer A; Ghumman UF; Tang S; Bi J; Chen W; Li Y
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31936321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.