BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 35451611)

  • 21. 3D Auto-Context-Based Locality Adaptive Multi-Modality GANs for PET Synthesis.
    Wang Y; Zhou L; Yu B; Wang L; Zu C; Lalush DS; Lin W; Wu X; Zhou J; Shen D
    IEEE Trans Med Imaging; 2019 Jun; 38(6):1328-1339. PubMed ID: 30507527
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D Segmentation Guided Style-Based Generative Adversarial Networks for PET Synthesis.
    Zhou Y; Yang Z; Zhang H; Chang EI; Fan Y; Xu Y
    IEEE Trans Med Imaging; 2022 Aug; 41(8):2092-2104. PubMed ID: 35239478
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generative Adversarial Networks in Brain Imaging: A Narrative Review.
    Laino ME; Cancian P; Politi LS; Della Porta MG; Saba L; Savevski V
    J Imaging; 2022 Mar; 8(4):. PubMed ID: 35448210
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Generative adversarial networks for spine imaging: A critical review of current applications.
    Vrettos K; Koltsakis E; Zibis AH; Karantanas AH; Klontzas ME
    Eur J Radiol; 2024 Feb; 171():111313. PubMed ID: 38237518
    [TBL] [Abstract][Full Text] [Related]  

  • 25. From CNNs to GANs for cross-modality medical image estimation.
    Shokraei Fard A; Reutens DC; Vegh V
    Comput Biol Med; 2022 Jul; 146():105556. PubMed ID: 35504221
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MedGAN: Medical image translation using GANs.
    Armanious K; Jiang C; Fischer M; Küstner T; Hepp T; Nikolaou K; Gatidis S; Yang B
    Comput Med Imaging Graph; 2020 Jan; 79():101684. PubMed ID: 31812132
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Generative Adversarial Networks in Digital Pathology and Histopathological Image Processing: A Review.
    Jose L; Liu S; Russo C; Nadort A; Di Ieva A
    J Pathol Inform; 2021; 12():43. PubMed ID: 34881098
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application and prospect for generative adversarial networks in cross-modality reconstruction of medical images.
    Sun J; Jin S; Shi R; Zuo C; Jiang J
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2022 Aug; 47(8):1001-1008. PubMed ID: 36097767
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generative Adversarial Networks in Digital Histopathology: Current Applications, Limitations, Ethical Considerations, and Future Directions.
    Alajaji SA; Khoury ZH; Elgharib M; Saeed M; Ahmed ARH; Khan MB; Tavares T; Jessri M; Puche AC; Hoorfar H; Stojanov I; Sciubba JJ; Sultan AS
    Mod Pathol; 2024 Jan; 37(1):100369. PubMed ID: 37890670
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GANs for medical image analysis.
    Kazeminia S; Baur C; Kuijper A; van Ginneken B; Navab N; Albarqouni S; Mukhopadhyay A
    Artif Intell Med; 2020 Sep; 109():101938. PubMed ID: 34756215
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptive rectification based adversarial network with spectrum constraint for high-quality PET image synthesis.
    Luo Y; Zhou L; Zhan B; Fei Y; Zhou J; Wang Y; Shen D
    Med Image Anal; 2022 Apr; 77():102335. PubMed ID: 34979432
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Medical applications of generative adversarial network: a visualization analysis.
    Zhang F; Wang L; Zhao J; Zhang X
    Acta Radiol; 2023 Oct; 64(10):2757-2767. PubMed ID: 37603577
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Augmented deep learning model for improved quantitative accuracy of MR-based PET attenuation correction in PSMA PET-MRI prostate imaging.
    Pozaruk A; Pawar K; Li S; Carey A; Cheng J; Sudarshan VP; Cholewa M; Grummet J; Chen Z; Egan G
    Eur J Nucl Med Mol Imaging; 2021 Jan; 48(1):9-20. PubMed ID: 32394162
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deepfakes in Ophthalmology: Applications and Realism of Synthetic Retinal Images from Generative Adversarial Networks.
    Chen JS; Coyner AS; Chan RVP; Hartnett ME; Moshfeghi DM; Owen LA; Kalpathy-Cramer J; Chiang MF; Campbell JP
    Ophthalmol Sci; 2021 Dec; 1(4):100079. PubMed ID: 36246951
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Independent brain
    Armanious K; Küstner T; Reimold M; Nikolaou K; La Fougère C; Yang B; Gatidis S
    Hell J Nucl Med; 2019; 22(3):179-186. PubMed ID: 31587027
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generative Adversarial Networks to Improve Fetal Brain Fine-Grained Plane Classification.
    Montero A; Bonet-Carne E; Burgos-Artizzu XP
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883977
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multimodal Medical Image Fusion of Positron Emission Tomography and Magnetic Resonance Imaging Using Generative Adversarial Networks.
    Nandhini Abirami R; Durai Raj Vincent PM; Srinivasan K; Manic KS; Chang CY
    Behav Neurol; 2022; 2022():6878783. PubMed ID: 35464043
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CG-3DSRGAN: A classification guided 3D generative adversarial network for image quality recovery from low-dose PET images.
    Xue Y; Peng Y; Bi L; Feng D; Kim J
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083742
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generative adversarial networks in medical image segmentation: A review.
    Xun S; Li D; Zhu H; Chen M; Wang J; Li J; Chen M; Wu B; Zhang H; Chai X; Jiang Z; Zhang Y; Huang P
    Comput Biol Med; 2022 Jan; 140():105063. PubMed ID: 34864584
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Generative Adversarial Network Technologies and Applications in Computer Vision.
    Jin L; Tan F; Jiang S
    Comput Intell Neurosci; 2020; 2020():1459107. PubMed ID: 32802024
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.