These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 35451783)

  • 1. Integration of Crop Growth Models and Genomic Prediction.
    Onogi A
    Methods Mol Biol; 2022; 2467():359-396. PubMed ID: 35451783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using genomic prediction with crop growth models enables the prediction of associated traits in wheat.
    Jighly A; Thayalakumaran T; O'Leary GJ; Kant S; Panozzo J; Aggarwal R; Hessel D; Forrest KL; Technow F; Tibbits JFG; Totir R; Hayden MJ; Munkvold J; Daetwyler HD
    J Exp Bot; 2023 Mar; 74(5):1389-1402. PubMed ID: 36205117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical sampling of missing environmental variables improves biophysical genomic prediction in wheat.
    Jighly A; Thayalakumaran T; Kant S; Panozzo J; Aggarwal R; Hessel D; Forrest KL; Technow F; Totir R; Goddard M; Pryce J; Hayden MJ; Munkvold J; O'Leary GJ
    Theor Appl Genet; 2024 Apr; 137(5):108. PubMed ID: 38637355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating biophysical crop growth models and whole genome prediction for their mutual benefit: a case study in wheat phenology.
    Jighly A; Weeks A; Christy B; O'Leary GJ; Kant S; Aggarwal R; Hessel D; Forrest KL; Technow F; Tibbits JFG; Totir R; Spangenberg GC; Hayden MJ; Munkvold J; Daetwyler HD
    J Exp Bot; 2023 Aug; 74(15):4415-4426. PubMed ID: 37177829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sire evaluation for total number born in pigs using a genomic reaction norms approach.
    Silva FF; Mulder HA; Knol EF; Lopes MS; Guimarães SE; Lopes PS; Mathur PK; Viana JM; Bastiaansen JW
    J Anim Sci; 2014 Sep; 92(9):3825-34. PubMed ID: 24492557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling G×E with historical weather information improves genomic prediction in new environments.
    Gillberg J; Marttinen P; Mamitsuka H; Kaski S
    Bioinformatics; 2019 Oct; 35(20):4045-4052. PubMed ID: 30977782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward integration of genomic selection with crop modelling: the development of an integrated approach to predicting rice heading dates.
    Onogi A; Watanabe M; Mochizuki T; Hayashi T; Nakagawa H; Hasegawa T; Iwata H
    Theor Appl Genet; 2016 Apr; 129(4):805-817. PubMed ID: 26791836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased prediction accuracy in wheat breeding trials using a marker × environment interaction genomic selection model.
    Lopez-Cruz M; Crossa J; Bonnett D; Dreisigacker S; Poland J; Jannink JL; Singh RP; Autrique E; de los Campos G
    G3 (Bethesda); 2015 Feb; 5(4):569-82. PubMed ID: 25660166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling strategies for assessing and increasing the effectiveness of new phenotyping techniques in plant breeding.
    van Eeuwijk FA; Bustos-Korts D; Millet EJ; Boer MP; Kruijer W; Thompson A; Malosetti M; Iwata H; Quiroz R; Kuppe C; Muller O; Blazakis KN; Yu K; Tardieu F; Chapman SC
    Plant Sci; 2019 May; 282():23-39. PubMed ID: 31003609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome and Environment Based Prediction Models and Methods of Complex Traits Incorporating Genotype × Environment Interaction.
    Crossa J; Montesinos-López OA; Pérez-Rodríguez P; Costa-Neto G; Fritsche-Neto R; Ortiz R; Martini JWR; Lillemo M; Montesinos-López A; Jarquin D; Breseghello F; Cuevas J; Rincent R
    Methods Mol Biol; 2022; 2467():245-283. PubMed ID: 35451779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic Prediction Accounting for Genotype by Environment Interaction Offers an Effective Framework for Breeding Simultaneously for Adaptation to an Abiotic Stress and Performance Under Normal Cropping Conditions in Rice.
    Ben Hassen M; Bartholomé J; Valè G; Cao TV; Ahmadi N
    G3 (Bethesda); 2018 Jul; 8(7):2319-2332. PubMed ID: 29743189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic reaction norm models exploiting genotype × environment interaction on sexual precocity indicator traits in Nellore cattle.
    Mota LFM; Fernandes GA; Herrera AC; Scalez DCB; Espigolan R; Magalhães AFB; Carvalheiro R; Baldi F; Albuquerque LG
    Anim Genet; 2020 Mar; 51(2):210-223. PubMed ID: 31944356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leveraging data from the Genomes-to-Fields Initiative to investigate genotype-by-environment interactions in maize in North America.
    Lopez-Cruz M; Aguate FM; Washburn JD; de Leon N; Kaeppler SM; Lima DC; Tan R; Thompson A; De La Bretonne LW; de Los Campos G
    Nat Commun; 2023 Oct; 14(1):6904. PubMed ID: 37903778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Variational Bayes Genomic-Enabled Prediction Model with Genotype × Environment Interaction.
    Montesinos-López OA; Montesinos-López A; Crossa J; Montesinos-López JC; Luna-Vázquez FJ; Salinas-Ruiz J; Herrera-Morales JR; Buenrostro-Mariscal R
    G3 (Bethesda); 2017 Jun; 7(6):1833-1853. PubMed ID: 28391241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating Crop Growth Models with Whole Genome Prediction through Approximate Bayesian Computation.
    Technow F; Messina CD; Totir LR; Cooper M
    PLoS One; 2015; 10(6):e0130855. PubMed ID: 26121133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype × Environment Interaction.
    Bandeira E Sousa M; Cuevas J; de Oliveira Couto EG; Pérez-Rodríguez P; Jarquín D; Fritsche-Neto R; Burgueño J; Crossa J
    G3 (Bethesda); 2017 Jun; 7(6):1995-2014. PubMed ID: 28455415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic models with genotype × environment interaction for predicting hybrid performance: an application in maize hybrids.
    Acosta-Pech R; Crossa J; de Los Campos G; Teyssèdre S; Claustres B; Pérez-Elizalde S; Pérez-Rodríguez P
    Theor Appl Genet; 2017 Jul; 130(7):1431-1440. PubMed ID: 28401254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions.
    Heslot N; Akdemir D; Sorrells ME; Jannink JL
    Theor Appl Genet; 2014 Feb; 127(2):463-80. PubMed ID: 24264761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The genomic determinants of genotype × environment interactions in gene expression.
    Grishkevich V; Yanai I
    Trends Genet; 2013 Aug; 29(8):479-87. PubMed ID: 23769209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting Rice Heading Date Using an Integrated Approach Combining a Machine Learning Method and a Crop Growth Model.
    Chen TS; Aoike T; Yamasaki M; Kajiya-Kanegae H; Iwata H
    Front Genet; 2020; 11():599510. PubMed ID: 33391352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.