These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 35451784)

  • 1. Phenomic Selection: A New and Efficient Alternative to Genomic Selection.
    Robert P; Brault C; Rincent R; Segura V
    Methods Mol Biol; 2022; 2467():397-420. PubMed ID: 35451784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenomic selection in wheat breeding: identification and optimisation of factors influencing prediction accuracy and comparison to genomic selection.
    Robert P; Auzanneau J; Goudemand E; Oury FX; Rolland B; Heumez E; Bouchet S; Le Gouis J; Rincent R
    Theor Appl Genet; 2022 Mar; 135(3):895-914. PubMed ID: 34988629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictor bias in genomic and phenomic selection.
    Dallinger HG; Löschenberger F; Bistrich H; Ametz C; Hetzendorfer H; Morales L; Michel S; Buerstmayr H
    Theor Appl Genet; 2023 Oct; 136(11):235. PubMed ID: 37878079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unraveling the potential of phenomic selection within and among diverse breeding material of maize (Zea mays L.).
    Weiß TM; Zhu X; Leiser WL; Li D; Liu W; Schipprack W; Melchinger AE; Hahn V; Würschum T
    G3 (Bethesda); 2022 Mar; 12(3):. PubMed ID: 35100379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The performance of phenomic selection depends on the genetic architecture of the target trait.
    Zhu X; Maurer HP; Jenz M; Hahn V; Ruckelshausen A; Leiser WL; Würschum T
    Theor Appl Genet; 2022 Feb; 135(2):653-665. PubMed ID: 34807268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenomic selection in wheat breeding: prediction of the genotype-by-environment interaction in multi-environment breeding trials.
    Robert P; Goudemand E; Auzanneau J; Oury FX; Rolland B; Heumez E; Bouchet S; Caillebotte A; Mary-Huard T; Le Gouis J; Rincent R
    Theor Appl Genet; 2022 Oct; 135(10):3337-3356. PubMed ID: 35939074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenomic Selection Is a Low-Cost and High-Throughput Method Based on Indirect Predictions: Proof of Concept on Wheat and Poplar.
    Rincent R; Charpentier JP; Faivre-Rampant P; Paux E; Le Gouis J; Bastien C; Segura V
    G3 (Bethesda); 2018 Dec; 8(12):3961-3972. PubMed ID: 30373914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative analysis of genomic and phenomic predictions of growth-related traits in 3-way coffee hybrids.
    Mbebi AJ; Breitler JC; Bordeaux M; Sulpice R; McHale M; Tong H; Toniutti L; Castillo JA; Bertrand B; Nikoloski Z
    G3 (Bethesda); 2022 Aug; 12(9):. PubMed ID: 35792875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies and considerations for implementing genomic selection to improve traits with additive and non-additive genetic architectures in sugarcane breeding.
    Voss-Fels KP; Wei X; Ross EM; Frisch M; Aitken KS; Cooper M; Hayes BJ
    Theor Appl Genet; 2021 May; 134(5):1493-1511. PubMed ID: 33587151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-infrared reflectance spectroscopy phenomic prediction can perform similarly to genomic prediction of maize agronomic traits across environments.
    DeSalvio AJ; Adak A; Murray SC; Jarquín D; Winans ND; Crozier D; Rooney WL
    Plant Genome; 2024 Jun; 17(2):e20454. PubMed ID: 38715204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using drone-retrieved multispectral data for phenomic selection in potato breeding.
    Maggiorelli A; Baig N; Prigge V; Bruckmüller J; Stich B
    Theor Appl Genet; 2024 Mar; 137(3):70. PubMed ID: 38446220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Re-imagining crop domestication in the era of high throughput phenomics.
    Van Tassel DL; DeHaan LR; Diaz-Garcia L; Hershberger J; Rubin MJ; Schlautman B; Turner K; Miller AJ
    Curr Opin Plant Biol; 2022 Feb; 65():102150. PubMed ID: 34883308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing winter wheat prediction with genomics, phenomics and environmental data.
    Montesinos-López OA; Herr AW; Crossa J; Montesinos-López A; Carter AH
    BMC Genomics; 2024 May; 25(1):544. PubMed ID: 38822262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interest of phenomic prediction as an alternative to genomic prediction in grapevine.
    Brault C; Lazerges J; Doligez A; Thomas M; Ecarnot M; Roumet P; Bertrand Y; Berger G; Pons T; François P; Le Cunff L; This P; Segura V
    Plant Methods; 2022 Sep; 18(1):108. PubMed ID: 36064570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crop breeding for a changing climate: integrating phenomics and genomics with bioinformatics.
    Marsh JI; Hu H; Gill M; Batley J; Edwards D
    Theor Appl Genet; 2021 Jun; 134(6):1677-1690. PubMed ID: 33852055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction.
    Xu Y; Zhang X; Li H; Zheng H; Zhang J; Olsen MS; Varshney RK; Prasanna BM; Qian Q
    Mol Plant; 2022 Nov; 15(11):1664-1695. PubMed ID: 36081348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early prediction of biomass in hybrid rye based on hyperspectral data surpasses genomic predictability in less-related breeding material.
    Galán RJ; Bernal-Vasquez AM; Jebsen C; Piepho HP; Thorwarth P; Steffan P; Gordillo A; Miedaner T
    Theor Appl Genet; 2021 May; 134(5):1409-1422. PubMed ID: 33630103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Image-based phenomic prediction can provide valuable decision support in wheat breeding.
    Roth L; Fossati D; Krähenbühl P; Walter A; Hund A
    Theor Appl Genet; 2023 Jun; 136(7):162. PubMed ID: 37368140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerating wheat breeding for end-use quality with multi-trait genomic predictions incorporating near infrared and nuclear magnetic resonance-derived phenotypes.
    Hayes BJ; Panozzo J; Walker CK; Choy AL; Kant S; Wong D; Tibbits J; Daetwyler HD; Rochfort S; Hayden MJ; Spangenberg GC
    Theor Appl Genet; 2017 Dec; 130(12):2505-2519. PubMed ID: 28840266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic selection strategies to increase genetic gain in tea breeding programs.
    Lubanga N; Massawe F; Mayes S; Gorjanc G; Bančič J
    Plant Genome; 2023 Mar; 16(1):e20282. PubMed ID: 36349831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.