BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35451811)

  • 1. Microtubule Dynamics Following Central and Peripheral Nervous System Axotomy.
    Kulkarni R; Thakur A; Kumar H
    ACS Chem Neurosci; 2022 May; 13(9):1358-1369. PubMed ID: 35451811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disorganized microtubules underlie the formation of retraction bulbs and the failure of axonal regeneration.
    Ertürk A; Hellal F; Enes J; Bradke F
    J Neurosci; 2007 Aug; 27(34):9169-80. PubMed ID: 17715353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal Intrinsic Regenerative Capacity: The Impact of Microtubule Organization and Axonal Transport.
    Murillo B; Mendes Sousa M
    Dev Neurobiol; 2018 Oct; 78(10):952-959. PubMed ID: 29738096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promoting axonal regeneration in the central nervous system by enhancing the cell body response to axotomy.
    Plunet W; Kwon BK; Tetzlaff W
    J Neurosci Res; 2002 Apr; 68(1):1-6. PubMed ID: 11933043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Canadian Association of Neuroscience review: axonal regeneration in the peripheral and central nervous systems--current issues and advances.
    Fenrich K; Gordon T
    Can J Neurol Sci; 2004 May; 31(2):142-56. PubMed ID: 15198438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Virtuous Cycle of Axon Growth: Axonal Transport of Growth-Promoting Machinery as an Intrinsic Determinant of Axon Regeneration.
    Petrova V; Eva R
    Dev Neurobiol; 2018 Oct; 78(10):898-925. PubMed ID: 29989351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local calcium-dependent mechanisms determine whether a cut axonal end assembles a retarded endbulb or competent growth cone.
    Kamber D; Erez H; Spira ME
    Exp Neurol; 2009 Sep; 219(1):112-25. PubMed ID: 19442660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of microtubule-based traps controls the sorting and concentration of vesicles to restricted sites of regenerating neurons after axotomy.
    Erez H; Malkinson G; Prager-Khoutorsky M; De Zeeuw CI; Hoogenraad CC; Spira ME
    J Cell Biol; 2007 Feb; 176(4):497-507. PubMed ID: 17283182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of the expression and phosphorylation of microtubule-associated protein 1B during regeneration of adult dorsal root ganglion neurons.
    Ma D; Connors T; Nothias F; Fischer I
    Neuroscience; 2000; 99(1):157-70. PubMed ID: 10924960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Axon resealing following transection takes longer in central axons than in peripheral axons: implications for axonal regeneration.
    Ahmed FA; Ingoglia NA; Sharma SC
    Exp Neurol; 2001 Feb; 167(2):451-5. PubMed ID: 11161634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-line confocal imaging of the events leading to structural dedifferentiation of an axonal segment into a growth cone after axotomy.
    Sahly I; Khoutorsky A; Erez H; Prager-Khoutorsky M; Spira ME
    J Comp Neurol; 2006 Feb; 494(5):705-20. PubMed ID: 16374810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A conditioning lesion induces changes in gene expression and axonal transport that enhance regeneration by increasing the intrinsic growth state of axons.
    Hoffman PN
    Exp Neurol; 2010 May; 223(1):11-8. PubMed ID: 19766119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic heterogeneity in axon regeneration.
    Fu XQ; Zhan WR; Tian WY; Cao DD; Luo ZG
    Biochem Soc Trans; 2022 Dec; 50(6):1753-1762. PubMed ID: 36382964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. mRNAs and Protein Synthetic Machinery Localize into Regenerating Spinal Cord Axons When They Are Provided a Substrate That Supports Growth.
    Kalinski AL; Sachdeva R; Gomes C; Lee SJ; Shah Z; Houle JD; Twiss JL
    J Neurosci; 2015 Jul; 35(28):10357-70. PubMed ID: 26180210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic Determinants of Axon Regeneration.
    Fawcett JW; Verhaagen J
    Dev Neurobiol; 2018 Oct; 78(10):890-897. PubMed ID: 30345655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Struggle to Make CNS Axons Regenerate: Why Has It Been so Difficult?
    Fawcett JW
    Neurochem Res; 2020 Jan; 45(1):144-158. PubMed ID: 31388931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Microtubule-Associated Protein Tau Mediates the Organization of Microtubules and Their Dynamic Exploration of Actin-Rich Lamellipodia and Filopodia of Cortical Growth Cones.
    Biswas S; Kalil K
    J Neurosci; 2018 Jan; 38(2):291-307. PubMed ID: 29167405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast axonal transport in central nervous system and peripheral nervous system axons following axotomy.
    Redshaw JD; Bisby MA
    J Neurobiol; 1984 Mar; 15(2):109-17. PubMed ID: 6201591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mouse hippocampal explant culture system to study isolated axons.
    Pathak GK; Aranda-Espinoza H; Shah SB
    J Neurosci Methods; 2014 Jul; 232():157-64. PubMed ID: 24861423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene expression profiling reveals multiple novel intrinsic and extrinsic factors associated with axonal regeneration failure.
    Küry P; Abankwa D; Kruse F; Greiner-Petter R; Müller HW
    Eur J Neurosci; 2004 Jan; 19(1):32-42. PubMed ID: 14750961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.