These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 35451832)

  • 21. Photocatalysis dramatically influences motion of magnetic microrobots: Application to removal of microplastics and dyes.
    Mayorga-Burrezo P; Mayorga-Martinez CC; Pumera M
    J Colloid Interface Sci; 2023 Aug; 643():447-454. PubMed ID: 37086534
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Maze in Plastic Wastes: Autonomous Motile Photocatalytic Microrobots against Microplastics.
    Beladi-Mousavi SM; Hermanová S; Ying Y; Plutnar J; Pumera M
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25102-25110. PubMed ID: 34009926
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Magnetic Microrobots Fabricated by Photopolymerization and Assembly.
    Liang X; Zhao Y; Liu D; Deng Y; Arai T; Kojima M; Liu X
    Cyborg Bionic Syst; 2023; 4():0060. PubMed ID: 38026540
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aligned Magnetic Nanocomposites for Modularized and Recyclable Soft Microrobots.
    Shui L; Ni K; Wang Z
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):43802-43814. PubMed ID: 36100583
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation Techniques Used in Shape-Forming Microrobotic Systems with Multiple Microrobots: A Review.
    Konara M; Mudugamuwa A; Dodampegama S; Roshan U; Amarasinghe R; Dao DV
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36422416
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multi-Wavelength Light-Responsive Metal-Phenolic Network-Based Microrobots for Reactive Species Scavenging.
    Guo Z; Liu T; Gao W; Iffelsberger C; Kong B; Pumera M
    Adv Mater; 2023 Mar; 35(10):e2210994. PubMed ID: 36591619
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shape-switching microrobots for medical applications: the influence of shape in drug delivery and locomotion.
    Fusco S; Huang HW; Peyer KE; Peters C; Häberli M; Ulbers A; Spyrogianni A; Pellicer E; Sort J; Pratsinis SE; Nelson BJ; Sakar MS; Pané S
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6803-11. PubMed ID: 25751020
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multimodal-Driven Magnetic Microrobots with Enhanced Bactericidal Activity for Biofilm Eradication and Removal from Titanium Mesh.
    Mayorga-Martinez CC; Zelenka J; Klima K; Kubanova M; Ruml T; Pumera M
    Adv Mater; 2023 Jun; 35(23):e2300191. PubMed ID: 36995927
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dipole-Moment Induced Phototaxis and Fuel-Free Propulsion of ZnO/Pt Janus Micromotors.
    He X; Jiang H; Li J; Ma Y; Fu B; Hu C
    Small; 2021 Aug; 17(31):e2101388. PubMed ID: 34173337
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Micellar Polymer Magnetic Microrobots as Efficient Nerve Agent Microcleaners.
    Pacheco M; Mayorga-Martinez CC; Escarpa A; Pumera M
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):26128-26134. PubMed ID: 35612487
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recoverable Bismuth-Based Microrobots: Capture, Transport, and On-Demand Release of Heavy Metals and an Anticancer Drug in Confined Spaces.
    Beladi-Mousavi SM; Khezri B; Krejčová L; Heger Z; Sofer Z; Fisher AC; Pumera M
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13359-13369. PubMed ID: 30925065
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multi-Stimuli-Responsive Tadpole-like Polymer/Lipid Janus Microrobots for Advanced Smart Material Applications.
    Okmen Altas B; Goktas C; Topcu G; Aydogan N
    ACS Appl Mater Interfaces; 2024 Mar; 16(12):15533-15547. PubMed ID: 38356451
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dual-stimuli-responsive CuS-based micromotors for efficient photo-Fenton degradation of antibiotics.
    Ma E; Wang K; Hu Z; Wang H
    J Colloid Interface Sci; 2021 Dec; 603():685-694. PubMed ID: 34225072
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phototactic Flocking of Photochemical Micromotors.
    Mou F; Zhang J; Wu Z; Du S; Zhang Z; Xu L; Guan J
    iScience; 2019 Sep; 19():415-424. PubMed ID: 31421596
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioinspired soft microrobots actuated by magnetic field.
    Gao Y; Wei F; Chao Y; Yao L
    Biomed Microdevices; 2021 Oct; 23(4):52. PubMed ID: 34599405
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Magnetically Driven Self-Degrading Zinc-Containing Cystine Microrobots for Treatment of Prostate Cancer.
    Ussia M; Urso M; Kratochvilova M; Navratil J; Balvan J; Mayorga-Martinez CC; Vyskocil J; Masarik M; Pumera M
    Small; 2023 Apr; 19(17):e2208259. PubMed ID: 36703532
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Soft Magnetic Microrobots for Photoactive Pollutant Removal.
    Maria-Hormigos R; Mayorga-Martinez CC; Pumera M
    Small Methods; 2023 Jan; 7(1):e2201014. PubMed ID: 36408765
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assembly and Transport of Microscopic Cargos via Reconfigurable Photoactivated Magnetic Microdockers.
    Martinez-Pedrero F; Massana-Cid H; Tierno P
    Small; 2017 May; 13(18):. PubMed ID: 28296018
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assembly of Fillable Microrobotic Systems by Microfluidic Loading with Dip Sealing.
    Sun R; Song X; Zhou K; Zuo Y; Wang R; Rifaie-Graham O; Peeler DJ; Xie R; Leng Y; Geng H; Brachi G; Ma Y; Liu Y; Barron L; Stevens MM
    Adv Mater; 2023 Mar; 35(13):e2207791. PubMed ID: 36502366
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Smart Microdevices Laying "Breadcrumbs" to Find the Way Home: Chemotactic Homing TiO
    Kong L; Mayorga-Martinez CC; Guan J; Pumera M
    Chem Asian J; 2019 Jul; 14(14):2456-2459. PubMed ID: 30845370
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.