BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 35451949)

  • 21. Clustered Regularly Interspaced Short Palindromic Repeat-Dependent, Biofilm-Specific Death of Pseudomonas aeruginosa Mediated by Increased Expression of Phage-Related Genes.
    Heussler GE; Cady KC; Koeppen K; Bhuju S; Stanton BA; O'Toole GA
    mBio; 2015 May; 6(3):e00129-15. PubMed ID: 25968642
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation of direct repeats, spacers and proteins associated with clustered regularly interspaced short palindromic repeat (CRISPR) system of Vibrio parahaemolyticus.
    Baliga P; Shekar M; Venugopal MN
    Mol Genet Genomics; 2019 Feb; 294(1):253-262. PubMed ID: 30357478
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR-Cas systems feature and targeting phages diversity in
    Panahi B; Dehganzad B; Nami Y
    Front Microbiol; 2023; 14():1281307. PubMed ID: 38125580
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of Probiotic Bacteria Genomes: Comparison of CRISPR/Cas Systems and Spacer Acquisition Diversity.
    Kahraman Ilıkkan Ö
    Indian J Microbiol; 2022 Mar; 62(1):40-46. PubMed ID: 35068602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Harnessing Type I and Type III CRISPR-Cas systems for genome editing.
    Li Y; Pan S; Zhang Y; Ren M; Feng M; Peng N; Chen L; Liang YX; She Q
    Nucleic Acids Res; 2016 Feb; 44(4):e34. PubMed ID: 26467477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR Diversity and Microevolution in Clostridium difficile.
    Andersen JM; Shoup M; Robinson C; Britton R; Olsen KE; Barrangou R
    Genome Biol Evol; 2016 Sep; 8(9):2841-55. PubMed ID: 27576538
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In Silico Processing of the Complete CRISPR-Cas Spacer Space for Identification of PAM Sequences.
    Mendoza BJ; Trinh CT
    Biotechnol J; 2018 Sep; 13(9):e1700595. PubMed ID: 30076736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the Origin of Reverse Transcriptase-Using CRISPR-Cas Systems and Their Hyperdiverse, Enigmatic Spacer Repertoires.
    Silas S; Makarova KS; Shmakov S; Páez-Espino D; Mohr G; Liu Y; Davison M; Roux S; Krishnamurthy SR; Fu BXH; Hansen LL; Wang D; Sullivan MB; Millard A; Clokie MR; Bhaya D; Lambowitz AM; Kyrpides NC; Koonin EV; Fire AZ
    mBio; 2017 Jul; 8(4):. PubMed ID: 28698278
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR-Cas Diversity in Clinical
    Tanmoy AM; Saha C; Sajib MSI; Saha S; Komurian-Pradel F; van Belkum A; Louwen R; Saha SK; Endtz HP
    Genes (Basel); 2020 Nov; 11(11):. PubMed ID: 33218076
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diversity of CRISPR/Cas system in Clostridium perfringens.
    Long J; Xu Y; Ou L; Yang H; Xi Y; Chen S; Duan G
    Mol Genet Genomics; 2019 Oct; 294(5):1263-1275. PubMed ID: 31134321
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CRISPR-Cas systems in multicellular cyanobacteria.
    Hou S; Brenes-Álvarez M; Reimann V; Alkhnbashi OS; Backofen R; Muro-Pastor AM; Hess WR
    RNA Biol; 2019 Apr; 16(4):518-529. PubMed ID: 29995583
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phylogenetic Distribution of CRISPR-Cas Systems in Antibiotic-Resistant Pseudomonas aeruginosa.
    van Belkum A; Soriaga LB; LaFave MC; Akella S; Veyrieras JB; Barbu EM; Shortridge D; Blanc B; Hannum G; Zambardi G; Miller K; Enright MC; Mugnier N; Brami D; Schicklin S; Felderman M; Schwartz AS; Richardson TH; Peterson TC; Hubby B; Cady KC
    mBio; 2015 Nov; 6(6):e01796-15. PubMed ID: 26604259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular Mechanisms of CRISPR-Cas Immunity in Bacteria.
    Nussenzweig PM; Marraffini LA
    Annu Rev Genet; 2020 Nov; 54():93-120. PubMed ID: 32857635
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Divergent methylation of CRISPR repeats and cas genes in a subtype I-D CRISPR-Cas-system.
    Scholz I; Lott SC; Behler J; Gärtner K; Hagemann M; Hess WR
    BMC Microbiol; 2019 Jul; 19(1):147. PubMed ID: 31262257
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Harnessing CRISPR-Cas systems for bacterial genome editing.
    Selle K; Barrangou R
    Trends Microbiol; 2015 Apr; 23(4):225-32. PubMed ID: 25698413
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) RNAs in the Porphyromonas gingivalis CRISPR-Cas I-C System.
    Burmistrz M; Rodriguez Martinez JI; Krochmal D; Staniec D; Pyrc K
    J Bacteriol; 2017 Dec; 199(23):. PubMed ID: 28893837
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the Origin of CRISPR-Cas Technology: From Prokaryotes to Mammals.
    Mojica FJM; Montoliu L
    Trends Microbiol; 2016 Oct; 24(10):811-820. PubMed ID: 27401123
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of CRISPR-Cas systems in Leptospira reveals potential application of CRISPR in genotyping of Leptospira interrogans.
    Xiao G; Yi Y; Che R; Zhang Q; Imran M; Khan A; Yan J; Lin X
    APMIS; 2019 Apr; 127(4):202-216. PubMed ID: 30908774
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diversity of the type I-U CRISPR-Cas system in Bifidobacterium.
    Ou L; Long J; Teng Y; Yang H; Xi Y; Duan G; Chen S
    Arch Microbiol; 2021 Aug; 203(6):3235-3243. PubMed ID: 33837440
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of Propionibacterium genomes: CRISPR-Cas systems, phage/plasmid diversity, and insertion sequences.
    Kahraman-Ilıkkan Ö
    Arch Microbiol; 2022 Jun; 204(7):434. PubMed ID: 35763226
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.