These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 35452091)
1. Benefits and Risks of Intercropping for Crop Resilience and Pest Management. Huss CP; Holmes KD; Blubaugh CK J Econ Entomol; 2022 Oct; 115(5):1350-1362. PubMed ID: 35452091 [TBL] [Abstract][Full Text] [Related]
2. Intercropping Cover Crops for a Vital Ecosystem Service: A Review of the Biocontrol of Insect Pests in Tea Agroecosystems. Pokharel SS; Yu H; Fang W; Parajulee MN; Chen F Plants (Basel); 2023 Jun; 12(12):. PubMed ID: 37375986 [TBL] [Abstract][Full Text] [Related]
3. Manipulation of Agricultural Habitats to Improve Conservation Biological Control in South America. Peñalver-Cruz A; Alvarez-Baca JK; Alfaro-Tapia A; Gontijo L; Lavandero B Neotrop Entomol; 2019 Dec; 48(6):875-898. PubMed ID: 31713220 [TBL] [Abstract][Full Text] [Related]
4. Perennial groundcovers: an emerging technology for soil conservation and the sustainable intensification of agriculture. Schlautman B; Bartel C; Diaz-Garcia L; Fei S; Flynn S; Haramoto E; Moore K; Raman DR Emerg Top Life Sci; 2021 May; 5(2):337-347. PubMed ID: 33973632 [TBL] [Abstract][Full Text] [Related]
5. Reduce pests, enhance production: benefits of intercropping at high densities for okra farmers in Cameroon. Singh A; Weisser WW; Hanna R; Houmgny R; Zytynska SE Pest Manag Sci; 2017 Oct; 73(10):2017-2027. PubMed ID: 28585376 [TBL] [Abstract][Full Text] [Related]
6. Crop Rotation and Intercropping Strategies for Weed Management. Liebman M; Dyck E Ecol Appl; 1993 Feb; 3(1):92-122. PubMed ID: 27759234 [TBL] [Abstract][Full Text] [Related]
7. Rapid transgenerational adaptation in response to intercropping reduces competition. Stefan L; Engbersen N; Schöb C Elife; 2022 Sep; 11():. PubMed ID: 36097813 [TBL] [Abstract][Full Text] [Related]
8. IPM reduces insecticide applications by 95% while maintaining or enhancing crop yields through wild pollinator conservation. Pecenka JR; Ingwell LL; Foster RE; Krupke CH; Kaplan I Proc Natl Acad Sci U S A; 2021 Nov; 118(44):. PubMed ID: 34697238 [TBL] [Abstract][Full Text] [Related]
9. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. Brooker RW; Bennett AE; Cong WF; Daniell TJ; George TS; Hallett PD; Hawes C; Iannetta PP; Jones HG; Karley AJ; Li L; McKenzie BM; Pakeman RJ; Paterson E; Schöb C; Shen J; Squire G; Watson CA; Zhang C; Zhang F; Zhang J; White PJ New Phytol; 2015 Apr; 206(1):107-117. PubMed ID: 25866856 [TBL] [Abstract][Full Text] [Related]
10. Pest management strategies in traditional agriculture: an African perspective. Abate T; van Huis A; Ampofo JK Annu Rev Entomol; 2000; 45():631-59. PubMed ID: 10761592 [TBL] [Abstract][Full Text] [Related]
11. Associational resistance through intercropping reduces yield losses to soil-borne pests and diseases. Chadfield VGA; Hartley SE; Redeker KR New Phytol; 2022 Sep; 235(6):2393-2405. PubMed ID: 35678712 [TBL] [Abstract][Full Text] [Related]
12. Crop-weed relationships are context-dependent and cannot fully explain the positive effects of intercropping on yield. Stefan L; Engbersen N; Schöb C Ecol Appl; 2021 Jun; 31(4):e02311. PubMed ID: 33630392 [TBL] [Abstract][Full Text] [Related]
13. Intercropping maize with brachiaria can be a double-edged sword strategy. Flausino BF; Machado CFM; Silva JHC; Ronchi CP; Pimentel MAG; Gontijo LM Pest Manag Sci; 2022 Dec; 78(12):5243-5250. PubMed ID: 36054418 [TBL] [Abstract][Full Text] [Related]
14. Agro-ecological options for fall armyworm (Spodoptera frugiperda JE Smith) management: Providing low-cost, smallholder friendly solutions to an invasive pest. Harrison RD; Thierfelder C; Baudron F; Chinwada P; Midega C; Schaffner U; van den Berg J J Environ Manage; 2019 Aug; 243():318-330. PubMed ID: 31102899 [TBL] [Abstract][Full Text] [Related]
15. Weeds Impose Unique Outcomes for Pests, Natural Enemies, and Yield in Two Vegetable Crops. Madden MK; Widick IV; Blubaugh CK Environ Entomol; 2021 Apr; 50(2):330-336. PubMed ID: 33480401 [TBL] [Abstract][Full Text] [Related]
16. Wheat (Triticum aestivum L.)-based intercropping systems for biological pest control. Lopes T; Hatt S; Xu Q; Chen J; Liu Y; Francis F Pest Manag Sci; 2016 Dec; 72(12):2193-2202. PubMed ID: 27271821 [TBL] [Abstract][Full Text] [Related]
17. The productive performance of intercropping. Li C; Stomph TJ; Makowski D; Li H; Zhang C; Zhang F; van der Werf W Proc Natl Acad Sci U S A; 2023 Jan; 120(2):e2201886120. PubMed ID: 36595678 [TBL] [Abstract][Full Text] [Related]
18. Maize-grain legume intercropping for enhanced resource use efficiency and crop productivity in the Guinea savanna of northern Ghana. Kermah M; Franke AC; Adjei-Nsiah S; Ahiabor BDK; Abaidoo RC; Giller KE Field Crops Res; 2017 Nov; 213():38-50. PubMed ID: 29104356 [TBL] [Abstract][Full Text] [Related]
19. Towards integrated pest and pollinator management in tropical crops. Merle I; Hipólito J; Requier F Curr Opin Insect Sci; 2022 Apr; 50():100866. PubMed ID: 34971783 [TBL] [Abstract][Full Text] [Related]
20. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Beillouin D; Ben-Ari T; Malézieux E; Seufert V; Makowski D Glob Chang Biol; 2021 Oct; 27(19):4697-4710. PubMed ID: 34114719 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]