These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 35452157)

  • 1. Protecting our environment, a motivating outdoor game for proteomics!
    Armengaud J
    Proteomics; 2022 May; 22(10):e2200055. PubMed ID: 35452157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the proteome coverage of Daphnia magna - implications for future ecotoxicoproteomics studies.
    Wilde MV; Brehm J; Schwarzer M; Stöckl JB; Laforsch C; Fröhlich T
    Proteomics; 2022 May; 22(10):e2100289. PubMed ID: 35143708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecotoxicoproteomics: A decade of progress in our understanding of anthropogenic impact on the environment.
    Gouveia D; Almunia C; Cogne Y; Pible O; Degli-Esposti D; Salvador A; Cristobal S; Sheehan D; Chaumot A; Geffard O; Armengaud J
    J Proteomics; 2019 Apr; 198():66-77. PubMed ID: 30529745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shotgun ecotoxicoproteomics of Daphnia pulex: biochemical effects of the anticancer drug tamoxifen.
    Borgatta M; Hernandez C; Decosterd LA; Chèvre N; Waridel P
    J Proteome Res; 2015 Jan; 14(1):279-91. PubMed ID: 25350372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Next-generation proteomics: toward customized biomarkers for environmental biomonitoring.
    Trapp J; Armengaud J; Salvador A; Chaumot A; Geffard O
    Environ Sci Technol; 2014 Dec; 48(23):13560-72. PubMed ID: 25345346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DIGE and iTRAQ as biomarker discovery tools in aquatic toxicology.
    Martyniuk CJ; Alvarez S; Denslow ND
    Ecotoxicol Environ Saf; 2012 Feb; 76(2):3-10. PubMed ID: 22056798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative proteomics in the wild: Accounting for intrapopulation variability improves describing proteome response in a Gammarus pulex field population exposed to cadmium.
    Cogne Y; Almunia C; Gouveia D; Pible O; François A; Degli-Esposti D; Geffard O; Armengaud J; Chaumot A
    Aquat Toxicol; 2019 Sep; 214():105244. PubMed ID: 31352074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the relevance of a multiplexed methodology for proteomic biomarker measurement in the invertebrate species Gammarus fossarum: A physiological and ecotoxicological study.
    Gouveia D; Chaumot A; Charnot A; Queau H; Armengaud J; Almunia C; Salvador A; Geffard O
    Aquat Toxicol; 2017 Sep; 190():199-209. PubMed ID: 28750222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The cuticle proteome of a planktonic crustacean.
    Otte KA; Fredericksen M; Fields P; Fröhlich T; Laforsch C; Ebert D
    Proteomics; 2024 Jul; 24(14):e2300292. PubMed ID: 38676470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term exposure of Daphnia magna to polystyrene microplastic (PS-MP) leads to alterations of the proteome, morphology and life-history.
    Trotter B; Wilde MV; Brehm J; Dafni E; Aliu A; Arnold GJ; Fröhlich T; Laforsch C
    Sci Total Environ; 2021 Nov; 795():148822. PubMed ID: 34328913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-model organisms, a species endangered by proteogenomics.
    Armengaud J; Trapp J; Pible O; Geffard O; Chaumot A; Hartmann EM
    J Proteomics; 2014 Jun; 105():5-18. PubMed ID: 24440519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomics as a route to identification of toxicity targets in environmental toxicology.
    Dowling VA; Sheehan D
    Proteomics; 2006 Oct; 6(20):5597-604. PubMed ID: 16972288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of environmental stress response on the proteome level.
    Nesatyy VJ; Suter MJ
    Mass Spectrom Rev; 2008; 27(6):556-74. PubMed ID: 18553564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reporting and reproducibility: Proteomics of fish models in environmental toxicology and ecotoxicology.
    Henke AN; Chilukuri S; Langan LM; Brooks BW
    Sci Total Environ; 2024 Feb; 912():168455. PubMed ID: 37979845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomics to assess the role of phenotypic plasticity in aquatic organisms exposed to pollution and global warming.
    Silvestre F; Gillardin V; Dorts J
    Integr Comp Biol; 2012 Nov; 52(5):681-94. PubMed ID: 22641836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteins in ecotoxicology - how, why and why not?
    Lemos MF; Soares AM; Correia AC; Esteves AC
    Proteomics; 2010 Feb; 10(4):873-87. PubMed ID: 19953548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ecotoxicogenomic approaches for understanding molecular mechanisms of environmental chemical toxicity using aquatic invertebrate, Daphnia model organism.
    Kim HJ; Koedrith P; Seo YR
    Int J Mol Sci; 2015 May; 16(6):12261-87. PubMed ID: 26035755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ecotoxicogenomics: the challenge of integrating genomics into aquatic and terrestrial ecotoxicology.
    Snape JR; Maund SJ; Pickford DB; Hutchinson TH
    Aquat Toxicol; 2004 Apr; 67(2):143-54. PubMed ID: 15003699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green systems biology - From single genomes, proteomes and metabolomes to ecosystems research and biotechnology.
    Weckwerth W
    J Proteomics; 2011 Dec; 75(1):284-305. PubMed ID: 21802534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mass spectrometry in environmental toxicology.
    Groh KJ; Suter MJ
    Chimia (Aarau); 2014; 68(3):140-5. PubMed ID: 24801844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.