BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35452157)

  • 1. Protecting our environment, a motivating outdoor game for proteomics!
    Armengaud J
    Proteomics; 2022 May; 22(10):e2200055. PubMed ID: 35452157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the proteome coverage of Daphnia magna - implications for future ecotoxicoproteomics studies.
    Wilde MV; Brehm J; Schwarzer M; Stöckl JB; Laforsch C; Fröhlich T
    Proteomics; 2022 May; 22(10):e2100289. PubMed ID: 35143708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecotoxicoproteomics: A decade of progress in our understanding of anthropogenic impact on the environment.
    Gouveia D; Almunia C; Cogne Y; Pible O; Degli-Esposti D; Salvador A; Cristobal S; Sheehan D; Chaumot A; Geffard O; Armengaud J
    J Proteomics; 2019 Apr; 198():66-77. PubMed ID: 30529745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shotgun ecotoxicoproteomics of Daphnia pulex: biochemical effects of the anticancer drug tamoxifen.
    Borgatta M; Hernandez C; Decosterd LA; Chèvre N; Waridel P
    J Proteome Res; 2015 Jan; 14(1):279-91. PubMed ID: 25350372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Next-generation proteomics: toward customized biomarkers for environmental biomonitoring.
    Trapp J; Armengaud J; Salvador A; Chaumot A; Geffard O
    Environ Sci Technol; 2014 Dec; 48(23):13560-72. PubMed ID: 25345346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DIGE and iTRAQ as biomarker discovery tools in aquatic toxicology.
    Martyniuk CJ; Alvarez S; Denslow ND
    Ecotoxicol Environ Saf; 2012 Feb; 76(2):3-10. PubMed ID: 22056798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative proteomics in the wild: Accounting for intrapopulation variability improves describing proteome response in a Gammarus pulex field population exposed to cadmium.
    Cogne Y; Almunia C; Gouveia D; Pible O; François A; Degli-Esposti D; Geffard O; Armengaud J; Chaumot A
    Aquat Toxicol; 2019 Sep; 214():105244. PubMed ID: 31352074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the relevance of a multiplexed methodology for proteomic biomarker measurement in the invertebrate species Gammarus fossarum: A physiological and ecotoxicological study.
    Gouveia D; Chaumot A; Charnot A; Queau H; Armengaud J; Almunia C; Salvador A; Geffard O
    Aquat Toxicol; 2017 Sep; 190():199-209. PubMed ID: 28750222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term exposure of Daphnia magna to polystyrene microplastic (PS-MP) leads to alterations of the proteome, morphology and life-history.
    Trotter B; Wilde MV; Brehm J; Dafni E; Aliu A; Arnold GJ; Fröhlich T; Laforsch C
    Sci Total Environ; 2021 Nov; 795():148822. PubMed ID: 34328913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-model organisms, a species endangered by proteogenomics.
    Armengaud J; Trapp J; Pible O; Geffard O; Chaumot A; Hartmann EM
    J Proteomics; 2014 Jun; 105():5-18. PubMed ID: 24440519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomics as a route to identification of toxicity targets in environmental toxicology.
    Dowling VA; Sheehan D
    Proteomics; 2006 Oct; 6(20):5597-604. PubMed ID: 16972288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of environmental stress response on the proteome level.
    Nesatyy VJ; Suter MJ
    Mass Spectrom Rev; 2008; 27(6):556-74. PubMed ID: 18553564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reporting and reproducibility: Proteomics of fish models in environmental toxicology and ecotoxicology.
    Henke AN; Chilukuri S; Langan LM; Brooks BW
    Sci Total Environ; 2024 Feb; 912():168455. PubMed ID: 37979845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomics to assess the role of phenotypic plasticity in aquatic organisms exposed to pollution and global warming.
    Silvestre F; Gillardin V; Dorts J
    Integr Comp Biol; 2012 Nov; 52(5):681-94. PubMed ID: 22641836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteins in ecotoxicology - how, why and why not?
    Lemos MF; Soares AM; Correia AC; Esteves AC
    Proteomics; 2010 Feb; 10(4):873-87. PubMed ID: 19953548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecotoxicogenomic approaches for understanding molecular mechanisms of environmental chemical toxicity using aquatic invertebrate, Daphnia model organism.
    Kim HJ; Koedrith P; Seo YR
    Int J Mol Sci; 2015 May; 16(6):12261-87. PubMed ID: 26035755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ecotoxicogenomics: the challenge of integrating genomics into aquatic and terrestrial ecotoxicology.
    Snape JR; Maund SJ; Pickford DB; Hutchinson TH
    Aquat Toxicol; 2004 Apr; 67(2):143-54. PubMed ID: 15003699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green systems biology - From single genomes, proteomes and metabolomes to ecosystems research and biotechnology.
    Weckwerth W
    J Proteomics; 2011 Dec; 75(1):284-305. PubMed ID: 21802534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass spectrometry in environmental toxicology.
    Groh KJ; Suter MJ
    Chimia (Aarau); 2014; 68(3):140-5. PubMed ID: 24801844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Guiana dolphins (Sotalia guianensis) as marine ecosystem sentinels: ecotoxicology and emerging diseases.
    de Moura JF; Hauser-Davis RA; Lemos L; Emin-Lima R; Siciliano S
    Rev Environ Contam Toxicol; 2014; 228():1-29. PubMed ID: 24162090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.