These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 35452304)
41. Engineering microvasculature by 3D bioprinting of prevascularized spheroids in photo-crosslinkable gelatin. De Moor L; Smet J; Plovyt M; Bekaert B; Vercruysse C; Asadian M; De Geyter N; Van Vlierberghe S; Dubruel P; Declercq H Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34496350 [TBL] [Abstract][Full Text] [Related]
42. Tunable metacrylated hyaluronic acid-based hybrid bioinks for stereolithography 3D bioprinting. Hossain Rakin R; Kumar H; Rajeev A; Natale G; Menard F; Li ITS; Kim K Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34507314 [TBL] [Abstract][Full Text] [Related]
43. Phage as versatile nanoink for printing 3-D cell-laden scaffolds. Lee DY; Lee H; Kim Y; Yoo SY; Chung WJ; Kim G Acta Biomater; 2016 Jan; 29():112-124. PubMed ID: 26441128 [TBL] [Abstract][Full Text] [Related]
44. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink. Garcia-Cruz MR; Postma A; Frith JE; Meagher L Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950 [TBL] [Abstract][Full Text] [Related]
45. Designing Decellularized Extracellular Matrix-Based Bioinks for 3D Bioprinting. Abaci A; Guvendiren M Adv Healthc Mater; 2020 Dec; 9(24):e2000734. PubMed ID: 32691980 [TBL] [Abstract][Full Text] [Related]
46. 3D bioprinted small extracellular vesicles from periodontal cells enhance mesenchymal stromal cell function. Han P; Raveendran N; Liu C; Basu S; Jiao K; Johnson N; Moran CS; Ivanovski S Biomater Adv; 2024 Apr; 158():213770. PubMed ID: 38242057 [TBL] [Abstract][Full Text] [Related]
48. Bioprinting of 3D Tissue Models Using Decellularized Extracellular Matrix Bioink. Pati F; Cho DW Methods Mol Biol; 2017; 1612():381-390. PubMed ID: 28634957 [TBL] [Abstract][Full Text] [Related]
49. Impact of oxygen-calcium-generating and bone morphogenetic protein-2 nanoparticles on survival and differentiation of bone marrow-derived mesenchymal stem cells in the 3D bio-printed scaffold. Aghajanpour S; Esfandyari-Manesh M; Ghahri T; Ghahremani MH; Atyabi F; Heydari M; Motasadizadeh H; Dinarvand R Colloids Surf B Biointerfaces; 2022 Aug; 216():112581. PubMed ID: 35617876 [TBL] [Abstract][Full Text] [Related]
50. Synchronous 3D Bioprinting of Large-Scale Cell-Laden Constructs with Nutrient Networks. Shao L; Gao Q; Xie C; Fu J; Xiang M; He Y Adv Healthc Mater; 2020 Aug; 9(15):e1901142. PubMed ID: 31846229 [TBL] [Abstract][Full Text] [Related]
51. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances. Chakraborty A; Roy A; Ravi SP; Paul A Biomater Sci; 2021 Sep; 9(19):6337-6354. PubMed ID: 34397056 [TBL] [Abstract][Full Text] [Related]
52. Cell-Laden Gelatin Methacryloyl Bioink for the Fabrication of Z-Stacked Hydrogel Scaffolds for Tissue Engineering. Seo JW; Moon JH; Jang G; Jung WK; Park YH; Park KT; Shin SR; Hwang YS; Bae H Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33348811 [TBL] [Abstract][Full Text] [Related]
53. Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Gao G; Schilling AF; Yonezawa T; Wang J; Dai G; Cui X Biotechnol J; 2014 Oct; 9(10):1304-11. PubMed ID: 25130390 [TBL] [Abstract][Full Text] [Related]
54. Double network laminarin-boronic/alginate dynamic bioink for 3D bioprinting cell-laden constructs. Amaral AJR; Gaspar VM; Lavrador P; Mano JF Biofabrication; 2021 May; 13(3):. PubMed ID: 34075894 [TBL] [Abstract][Full Text] [Related]
55. Three-dimensional bioprinting of a full-thickness functional skin model using acellular dermal matrix and gelatin methacrylamide bioink. Jin R; Cui Y; Chen H; Zhang Z; Weng T; Xia S; Yu M; Zhang W; Shao J; Yang M; Han C; Wang X Acta Biomater; 2021 Sep; 131():248-261. PubMed ID: 34265473 [TBL] [Abstract][Full Text] [Related]
56. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Daly AC; Critchley SE; Rencsok EM; Kelly DJ Biofabrication; 2016 Oct; 8(4):045002. PubMed ID: 27716628 [TBL] [Abstract][Full Text] [Related]
57. Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Das S; Pati F; Choi YJ; Rijal G; Shim JH; Kim SW; Ray AR; Cho DW; Ghosh S Acta Biomater; 2015 Jan; 11():233-46. PubMed ID: 25242654 [TBL] [Abstract][Full Text] [Related]
58. Nanoengineered Ionic-Covalent Entanglement (NICE) Bioinks for 3D Bioprinting. Chimene D; Peak CW; Gentry JL; Carrow JK; Cross LM; Mondragon E; Cardoso GB; Kaunas R; Gaharwar AK ACS Appl Mater Interfaces; 2018 Mar; 10(12):9957-9968. PubMed ID: 29461795 [TBL] [Abstract][Full Text] [Related]
59. Three-dimensional bioprinting of artificial ovaries by an extrusion-based method using gelatin-methacryloyl bioink. Wu T; Gao YY; Su J; Tang XN; Chen Q; Ma LW; Zhang JJ; Wu JM; Wang SX Climacteric; 2022 Apr; 25(2):170-178. PubMed ID: 33993814 [TBL] [Abstract][Full Text] [Related]
60. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix. Shin YJ; Shafranek RT; Tsui JH; Walcott J; Nelson A; Kim DH Acta Biomater; 2021 Jan; 119():75-88. PubMed ID: 33166713 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]