These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 35452776)

  • 1. Strategies employed in the design of antimicrobial peptides with enhanced proteolytic stability.
    Lai Z; Yuan X; Chen H; Zhu Y; Dong N; Shan A
    Biotechnol Adv; 2022 Oct; 59():107962. PubMed ID: 35452776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boosting stability and therapeutic potential of proteolysis-resistant antimicrobial peptides by end-tagging β-naphthylalanine.
    He S; Yang Z; Li X; Wu H; Zhang L; Shan A; Wang J
    Acta Biomater; 2023 Jul; 164():175-194. PubMed ID: 37100185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Very Short and Stable Lactoferricin-Derived Antimicrobial Peptides: Design Principles and Potential Uses.
    Svendsen JSM; Grant TM; Rennison D; Brimble MA; Svenson J
    Acc Chem Res; 2019 Mar; 52(3):749-759. PubMed ID: 30829472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current synthetic chemistry towards cyclic antimicrobial peptides.
    He T; Qu R; Zhang J
    J Pept Sci; 2022 Jun; 28(6):e3387. PubMed ID: 34931393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized proteolytic resistance motif (DabW)-based U1-2WD: A membrane-induced self-aggregating peptide to trigger bacterial agglutination and death.
    He S; Yang Z; Li X; Wu H; Zhang L; Wang J; Shan A
    Acta Biomater; 2022 Nov; 153():540-556. PubMed ID: 36162762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design methods for antimicrobial peptides with improved performance.
    Mwangi J; Kamau PM; Thuku RC; Lai R
    Zool Res; 2023 Nov; 44(6):1095-1114. PubMed ID: 37914524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small cationic antimicrobial peptidomimetics: emerging candidate for the development of potential anti-infective agents.
    Lohan S; Bisht GS
    Curr Pharm Des; 2013; 19(32):5809-23. PubMed ID: 23656460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In pursuit of next-generation therapeutics: Antimicrobial peptides against superbugs, their sources, mechanism of action, nanotechnology-based delivery, and clinical applications.
    Thakur A; Sharma A; Alajangi HK; Jaiswal PK; Lim YB; Singh G; Barnwal RP
    Int J Biol Macromol; 2022 Oct; 218():135-156. PubMed ID: 35868409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Progress on the design and optimization of antimicrobial peptides].
    Zhang R; Wu D; Gao Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Dec; 39(6):1247-1253. PubMed ID: 36575095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unnatural amino acids: promising implications for the development of new antimicrobial peptides.
    Wang X; Yang X; Wang Q; Meng D
    Crit Rev Microbiol; 2023 Mar; 49(2):231-255. PubMed ID: 35254957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo generation of short antimicrobial peptides with enhanced stability and cell specificity.
    Kim H; Jang JH; Kim SC; Cho JH
    J Antimicrob Chemother; 2014 Jan; 69(1):121-32. PubMed ID: 23946320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lights and Shadows on the Therapeutic Use of Antimicrobial Peptides.
    Bellotti D; Remelli M
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections.
    Zhu Y; Hao W; Wang X; Ouyang J; Deng X; Yu H; Wang Y
    Med Res Rev; 2022 Jul; 42(4):1377-1422. PubMed ID: 34984699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lysine-Tethered Stable Bicyclic Cationic Antimicrobial Peptide Combats Bacterial Infection in Vivo.
    He T; Xu L; Hu Y; Tang X; Qu R; Zhao X; Bai H; Li L; Chen W; Luo G; Fu G; Wang W; Xia X; Zhang J
    J Med Chem; 2022 Aug; 65(15):10523-10533. PubMed ID: 35920072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-Specific Isopeptide Bond Formation: A Powerful Tool for the Generation of Potent and Nontoxic Antimicrobial Peptides.
    Wani NA; Stolovicki E; Hur DB; Shai Y
    J Med Chem; 2022 Mar; 65(6):5085-5094. PubMed ID: 35290038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conjugation of antimicrobial peptides to enhance therapeutic efficacy.
    Selvaraj SP; Chen JY
    Eur J Med Chem; 2023 Nov; 259():115680. PubMed ID: 37515922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short Antimicrobial Peptides: Therapeutic Potential and Recent Advancements.
    Sharma L; Bisht GS
    Curr Pharm Des; 2023; 29(38):3005-3017. PubMed ID: 38018196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Modification and Design of Antimicrobial Peptide.
    Gao Y; Fang H; Fang L; Liu D; Liu J; Su M; Fang Z; Ren W; Jiao H
    Curr Pharm Des; 2018; 24(8):904-910. PubMed ID: 29436993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds.
    Erdem Büyükkiraz M; Kesmen Z
    J Appl Microbiol; 2022 Mar; 132(3):1573-1596. PubMed ID: 34606679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in antimicrobial peptide-based therapy.
    Mulukutla A; Shreshtha R; Kumar Deb V; Chatterjee P; Jain U; Chauhan N
    Bioorg Chem; 2024 Apr; 145():107151. PubMed ID: 38359706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.