BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35452825)

  • 1. Mathematical modeling of dark fermentation of macroalgae for hydrogen and volatile fatty acids production.
    Kim B; Jeong J; Kim J; Hee Yoon H; Khanh Thinh Nguyen P; Kim J
    Bioresour Technol; 2022 Jun; 354():127193. PubMed ID: 35452825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen production from macroalgae by simultaneous dark fermentation and microbial electrolysis cell.
    Nguyen PKT; Das G; Kim J; Yoon HH
    Bioresour Technol; 2020 Nov; 315():123795. PubMed ID: 32659424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of initial pH on the production of volatile fatty acids and hydrogen during dark fermentation of kitchen waste.
    Slezak R; Grzelak J; Krzystek L; Ledakowicz S
    Environ Technol; 2021 Nov; 42(27):4269-4278. PubMed ID: 32255721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deciphering the key operational factors and microbial features associated with volatile fatty acids production during paper wastes and sewage sludge co-fermentation.
    Luo J; Li Y; Li H; Li Y; Lin L; Li Y; Huang W; Cao J; Wu Y
    Bioresour Technol; 2022 Jan; 344(Pt B):126318. PubMed ID: 34775055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation.
    Wang D; Liu Y; Ngo HH; Zhang C; Yang Q; Peng L; He D; Zeng G; Li X; Ni BJ
    Bioresour Technol; 2017 Aug; 238():343-351. PubMed ID: 28456042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbohydrate-to-protein ratio regulates hydrolysis and acidogenesis processes during volatile fatty acids production.
    Wang L; Hao J; Wang C; Li Y; Yang Q
    Bioresour Technol; 2022 Jul; 355():127266. PubMed ID: 35526712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of clarithromycin on the production of volatile fatty acids from waste activated sludge anaerobic fermentation.
    Huang X; Xu Q; Wu Y; Wang D; Yang Q; Chen F; Wu Y; Pi Z; Chen Z; Li X; Zhong Q
    Bioresour Technol; 2019 Sep; 288():121598. PubMed ID: 31176944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of volatile fatty acids and H
    Slezak R; Grzelak J; Krzystek L; Ledakowicz S
    Environ Technol; 2020 Dec; 41(28):3767-3777. PubMed ID: 31084521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acidogenic fermentation of potato peel waste for volatile fatty acids production: Effect of initial organic load.
    Lu Y; Chen R; Huang L; Wang X; Chou S; Zhu J
    J Biotechnol; 2023 Sep; 374():114-121. PubMed ID: 37579845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of diclofenac on the production of volatile fatty acids from anaerobic fermentation of waste activated sludge.
    Hu J; Zhao J; Wang D; Li X; Zhang D; Xu Q; Peng L; Yang Q; Zeng G
    Bioresour Technol; 2018 Apr; 254():7-15. PubMed ID: 29413941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upgrading volatile fatty acids production through anaerobic co-fermentation of mushroom residue and sewage sludge: Performance evaluation and kinetic analysis.
    Fang W; Zhang P; Zhang T; Requeson DC; Poser M
    J Environ Manage; 2019 Jul; 241():612-618. PubMed ID: 30962005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of volatile fatty acids (VFAs) from five commercial bioplastics via acidogenic fermentation.
    García-Depraect O; Lebrero R; Rodriguez-Vega S; Börner RA; Börner T; Muñoz R
    Bioresour Technol; 2022 Sep; 360():127655. PubMed ID: 35870672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting VFA formation by dark fermentation of particulate substrates.
    Arudchelvam Y; Perinpanayagam M; Nirmalakhandan N
    Bioresour Technol; 2010 Oct; 101(19):7492-9. PubMed ID: 20472426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced volatile fatty acids accumulation in anaerobic digestion through arresting methanogenesis by using hydrogen peroxide.
    Xu Y; He Z
    Water Environ Res; 2021 Oct; 93(10):2051-2059. PubMed ID: 33894043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Agroindustrial waste as a resource for volatile fatty acids production via anaerobic fermentation.
    Greses S; Tomás-Pejó E; Gónzalez-Fernández C
    Bioresour Technol; 2020 Feb; 297():122486. PubMed ID: 31796382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of volatile solids and pH for the production of volatile fatty acids: Batch fermentation tests using sewage sludge.
    Presti D; Cosenza A; Capri FC; Gallo G; Alduina R; Mannina G
    Bioresour Technol; 2021 Dec; 342():125853. PubMed ID: 34536841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Medium-chain carboxylates production by co-fermentation of sewage sludge and macroalgae.
    Yin Y; Wang J
    Bioresour Technol; 2022 Mar; 347():126718. PubMed ID: 35032558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pilot-scale fermentation of urban food waste for volatile fatty acids production: The importance of pH.
    Yu P; Tu W; Wu M; Zhang Z; Wang H
    Bioresour Technol; 2021 Jul; 332():125116. PubMed ID: 33857863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of volatile fatty acids from sewage organic matter by combined bioflocculation and alkaline fermentation.
    Khiewwijit R; Temmink H; Labanda A; Rijnaarts H; Keesman KJ
    Bioresour Technol; 2015 Dec; 197():295-301. PubMed ID: 26342342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long hydraulic retention time mediates stable volatile fatty acids production against slight pH oscillations.
    Gonçalves MJ; González-Fernández C; Greses S
    Waste Manag; 2024 Mar; 176():140-148. PubMed ID: 38281345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.