These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 35452888)
1. Techno-economic and sustainability analysis of siloxane removal from landfill gas used for electricity generation. Amaraibi RJ; Joseph B; Kuhn JN J Environ Manage; 2022 Jul; 314():115070. PubMed ID: 35452888 [TBL] [Abstract][Full Text] [Related]
2. Techno-economic assessment of landfill gas (LFG) to electric energy: Selection of the optimal technology through field-study and model simulation. Manasaki V; Palogos I; Chourdakis I; Tsafantakis K; Gikas P Chemosphere; 2021 Apr; 269():128688. PubMed ID: 33189397 [TBL] [Abstract][Full Text] [Related]
3. Modeling landfill gas potential and potential energy recovery from Thohoyandou landfill site, South Africa. Njoku PO; Edokpayi JN; Odiyo JO J Air Waste Manag Assoc; 2020 Aug; 70(8):820-833. PubMed ID: 32497468 [TBL] [Abstract][Full Text] [Related]
4. Harnessing landfill gas (LFG) for electricity: A strategy to mitigate greenhouse gas (GHG) emissions in Jakarta (Indonesia). Kurniawan TA; Liang X; Singh D; Othman MHD; Goh HH; Gikas P; Kern AO; Kusworo TD; Shoqeir JA J Environ Manage; 2022 Jan; 301():113882. PubMed ID: 34638040 [TBL] [Abstract][Full Text] [Related]
5. Requirements, techniques, and costs for contaminant removal from landfill gas. Kuhn JN; Elwell AC; Elsayed NH; Joseph B Waste Manag; 2017 May; 63():246-256. PubMed ID: 28209243 [TBL] [Abstract][Full Text] [Related]
6. Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures. Yang N; Zhang H; Shao LM; Lü F; He PJ J Environ Manage; 2013 Nov; 129():510-21. PubMed ID: 24018116 [TBL] [Abstract][Full Text] [Related]
7. Quantification of landfill gas generation and renewable energy potential in arid countries: Case study of Bahrain. Coskuner G; Jassim MS; Nazeer N; Damindra GH Waste Manag Res; 2020 Oct; 38(10):1110-1118. PubMed ID: 32564700 [TBL] [Abstract][Full Text] [Related]
8. Evaluating the efficacy of biogeochemical cover system in mitigating landfill gas emissions: A large-scale laboratory simulation. Verma G; Chetri JK; Reddy KR Environ Sci Pollut Res Int; 2024 Aug; 31(38):50782-50803. PubMed ID: 39098970 [TBL] [Abstract][Full Text] [Related]
9. Estimation of landfill gas production and potential utilization in a South Africa landfill. Njoku PO; Edokpayi JN J Air Waste Manag Assoc; 2023 Jan; 73(1):1-14. PubMed ID: 35503340 [TBL] [Abstract][Full Text] [Related]
10. Life-Cycle Assessment of a Regulatory Compliant U.S. Municipal Solid Waste Landfill. Wang Y; Levis JW; Barlaz MA Environ Sci Technol; 2021 Oct; 55(20):13583-13592. PubMed ID: 34597038 [TBL] [Abstract][Full Text] [Related]
11. Technical and economic evaluation of biogas capture and treatment for the Piedras Blancas landfill in Córdoba, Argentina. Francisca FM; Montoro MA; Glatstein DA J Air Waste Manag Assoc; 2017 May; 67(5):537-549. PubMed ID: 27723443 [TBL] [Abstract][Full Text] [Related]
12. Life Cycle Analysis of Fischer-Tropsch Diesel Produced by Tri-Reforming and Fischer-Tropsch Synthesis (TriFTS) of Landfill Gas. Poddar TK; Zaimes GG; Kar S; Walker DM; Hawkins TR Environ Sci Technol; 2023 Dec; 57(48):19602-19611. PubMed ID: 37955401 [TBL] [Abstract][Full Text] [Related]
13. Comparision of two different ways of landfill gas utilization through greenhouse gas emission reductions analysis and financial analysis. Han H; Qian G; Long J; Li S Waste Manag Res; 2009 Nov; 27(9):922-7. PubMed ID: 19767323 [TBL] [Abstract][Full Text] [Related]
14. Comparison between landfill gas and waste incineration for power generation in Astana, Kazakhstan. Inglezakis VJ; Rojas-Solórzano L; Kim J; Aitbekova A; Ismailova A Waste Manag Res; 2015 May; 33(5):486-94. PubMed ID: 25819927 [TBL] [Abstract][Full Text] [Related]
15. Modeling methane oxidation in landfill cover soils as indicator of functional stability with respect to gas management. Morris JWF; Caldwell MD; Obereiner JM; O'Donnell ST; Johnson TR; Abichou T J Air Waste Manag Assoc; 2019 Jan; 69(1):13-22. PubMed ID: 30010508 [TBL] [Abstract][Full Text] [Related]
16. Environmental assessment of gas management options at the Old Ammässuo landfill (Finland) by means of LCA-modeling (EASEWASTE). Manfredi S; Niskanen A; Christensen TH Waste Manag; 2009 May; 29(5):1588-94. PubMed ID: 19081238 [TBL] [Abstract][Full Text] [Related]
17. Climate co-benefits of energy recovery from landfill gas in developing Asian cities: a case study in Bangkok. Menikpura SN; Sang-Arun J; Bengtsson M Waste Manag Res; 2013 Oct; 31(10):1002-11. PubMed ID: 23797299 [TBL] [Abstract][Full Text] [Related]
18. Design and analysis of siloxanes removal by adsorption from landfill gas for waste-to-energy processes. Elwell AC; Elsayed NH; Kuhn JN; Joseph B Waste Manag; 2018 Mar; 73():189-196. PubMed ID: 29269285 [TBL] [Abstract][Full Text] [Related]
19. Climate Change Impacts of Electricity Generated at a Waste-to-Energy Facility. Pfadt-Trilling AR; Volk TA; Fortier MP Environ Sci Technol; 2021 Feb; 55(3):1436-1445. PubMed ID: 33417433 [TBL] [Abstract][Full Text] [Related]
20. Techno-economic and environmental assessments for sustainable bio-methanol production as landfill gas valorization. Choe C; Byun M; Lee H; Lim H Waste Manag; 2022 Aug; 150():90-97. PubMed ID: 35810729 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]