BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 35452900)

  • 1. Magnetic iron oxide cores with attached gold nanostructures coated with a layer of silica: An easily, homogeneously deposited new nanomaterial for surface-enhanced Raman scattering measurements.
    Michałowska A; Krajczewski J; Kudelski A
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Sep; 277():121266. PubMed ID: 35452900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The First Silver-Based Plasmonic Nanomaterial for Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy with Magnetic Properties.
    Michałowska A; Kudelski A
    Molecules; 2022 May; 27(10):. PubMed ID: 35630560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of MBA-Encoded Silver/Silica Core-Shell Nanoparticles as Novel SERS Tags for Biosensing Gibberellin A
    Wei Q; Lin J; Liu F; Wen C; Li N; Huang G; Luo Z
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31775290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth of Spherical Gold Satellites on the Surface of Au@Ag@SiO
    Yang Y; Zhu J; Zhao J; Weng GJ; Li JJ; Zhao JW
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3617-3626. PubMed ID: 30608142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-Enhanced Raman Scattering Active Plasmonic Nanoparticles with Ultrasmall Interior Nanogap for Multiplex Quantitative Detection and Cancer Cell Imaging.
    Li J; Zhu Z; Zhu B; Ma Y; Lin B; Liu R; Song Y; Lin H; Tu S; Yang C
    Anal Chem; 2016 Aug; 88(15):7828-36. PubMed ID: 27385563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesoporous silica-coated plasmonic nanostructures for surface-enhanced Raman scattering detection and photothermal therapy.
    Yang J; Shen D; Zhou L; Li W; Fan J; El-Toni AM; Zhang WX; Zhang F; Zhao D
    Adv Healthc Mater; 2014 Oct; 3(10):1620-8. PubMed ID: 24665061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of Densely Immobilized Gold-Assembled Silica Nanostructures.
    Seong B; Bock S; Hahm E; Huynh KH; Kim J; Lee SH; Pham XH; Jun BH
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33802614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method.
    Lin M; Wang Y; Sun X; Wang W; Chen L
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold and silver nanoparticle monomers are non-SERS-active: a negative experimental study with silica-encapsulated Raman-reporter-coated metal colloids.
    Zhang Y; Walkenfort B; Yoon JH; Schlücker S; Xie W
    Phys Chem Chem Phys; 2015 Sep; 17(33):21120-6. PubMed ID: 25491599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 4-Mercaptobenzoic Acid Labeled Gold-Silver-Alloy-Embedded Silica Nanoparticles as an Internal Standard Containing Nanostructures for Sensitive Quantitative Thiram Detection.
    Pham XH; Hahm E; Huynh KH; Son BS; Kim HM; Jeong DH; Jun BH
    Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31569479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic Pollen Grain Nanostructures: A Three-Dimensional Surface-Enhanced Raman Scattering (SERS)-Active Substrate.
    Hossain MK; Drmosh QA; Mohamedkhair AK
    Chem Asian J; 2021 Jul; 16(13):1807-1819. PubMed ID: 34009749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly sensitive near-infrared SERS nanoprobes for in vivo imaging using gold-assembled silica nanoparticles with controllable nanogaps.
    Bock S; Choi YS; Kim M; Yun Y; Pham XH; Kim J; Seong B; Kim W; Jo A; Ham KM; Lee SG; Lee SH; Kang H; Choi HS; Jeong DH; Chang H; Kim DE; Jun BH
    J Nanobiotechnology; 2022 Mar; 20(1):130. PubMed ID: 35279134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M; Haes AJ
    J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile Histamine Detection by Surface-Enhanced Raman Scattering using SiO
    Huynh KH; Pham XH; Hahm E; An J; Kim HM; Jo A; Seong B; Kim YH; Son BS; Kim J; Rho WY; Jun BH
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32516981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile In-Situ photocatalytic reduction of AuNPs on multilayer Core-Shell Fe
    Wu P; Sun X; Hao N; Wang L; Huang J; Tang J
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 302():123101. PubMed ID: 37423099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photochemical decoration of magnetic composites with silver nanostructures for determination of creatinine in urine by surface-enhanced Raman spectroscopy.
    Alula MT; Yang J
    Talanta; 2014 Dec; 130():55-62. PubMed ID: 25159379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SERS detection of urea and ammonium sulfate adulterants in milk with coffee ring effect.
    Hussain A; Sun DW; Pu H
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2019 Jun; 36(6):851-862. PubMed ID: 31034331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ construction of Fe
    Zheng D; Zhang X; Zhang Y; Fan W; Zhao X; Gan T; Lu Y; Li P; Xu W
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Nov; 300():122897. PubMed ID: 37229942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aptasensor based on a flower-shaped silver magnetic nanocomposite enables the sensitive and label-free detection of troponin I (cTnI) by SERS.
    Alves RS; Sigoli FA; Mazali IO
    Nanotechnology; 2020 Dec; 31(50):505505. PubMed ID: 32927448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porous SiO
    Si Y; Li L; Qin X; Bai Y; Li J; Yin Y
    Anal Chim Acta; 2019 May; 1057():1-10. PubMed ID: 30832907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.