These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
507 related articles for article (PubMed ID: 3545292)
1. Aminoacyl-tRNA-elongation factor Tu-ribosome interaction leading to hydrolysis of guanosine 5'-triphosphate. Takahashi K; Ghag S; Chládek S Biochemistry; 1986 Dec; 25(25):8330-6. PubMed ID: 3545292 [TBL] [Abstract][Full Text] [Related]
2. GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs. Rodnina MV; Wintermeyer W Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1945-9. PubMed ID: 7892205 [TBL] [Abstract][Full Text] [Related]
3. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome. Pape T; Wintermeyer W; Rodnina MV EMBO J; 1998 Dec; 17(24):7490-7. PubMed ID: 9857203 [TBL] [Abstract][Full Text] [Related]
4. The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome. Vorstenbosch E; Pape T; Rodnina MV; Kraal B; Wintermeyer W EMBO J; 1996 Dec; 15(23):6766-74. PubMed ID: 8978702 [TBL] [Abstract][Full Text] [Related]
5. Substitution of Val20 by Gly in elongation factor Tu. Effects on the interaction with elongation factors Ts, aminoacyl-tRNA and ribosomes. Jacquet E; Parmeggiani A Eur J Biochem; 1989 Nov; 185(2):341-6. PubMed ID: 2684669 [TBL] [Abstract][Full Text] [Related]
6. Effect of thiostrepton and 3'-terminal fragments of aminoacyl-tRNA on EF-Tu and ribosome-dependent GTP hydrolysis. Bhuta P; Chládek S Biochim Biophys Acta; 1982 Aug; 698(2):167-72. PubMed ID: 6127109 [TBL] [Abstract][Full Text] [Related]
7. Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu. Wolf H; Chinali G; Parmeggiani A Proc Natl Acad Sci U S A; 1974 Dec; 71(12):4910-4. PubMed ID: 4373734 [TBL] [Abstract][Full Text] [Related]
8. Effects of nucleotide- and aurodox-induced changes in elongation factor Tu conformation upon its interactions with aminoacyl transfer RNA. A fluorescence study. Dell VA; Miller DL; Johnson AE Biochemistry; 1990 Feb; 29(7):1757-63. PubMed ID: 2110000 [TBL] [Abstract][Full Text] [Related]
9. Elongation factor Tu ternary complex binds to small ribosomal subunits in a functionally active state. Langer JA; Jurnak F; Lake JA Biochemistry; 1984 Dec; 23(25):6171-8. PubMed ID: 6395891 [TBL] [Abstract][Full Text] [Related]
10. The elongation factor Tu from Escherichia coli, aminoacyl-tRNA, and guanosine tetraphosphate form a ternary complex which is bound by programmed ribosomes. Pingoud A; Gast FU; Block W; Peters F J Biol Chem; 1983 Dec; 258(23):14200-5. PubMed ID: 6358217 [TBL] [Abstract][Full Text] [Related]
11. Fluorescence characterization of the interaction of various transfer RNA species with elongation factor Tu.GTP: evidence for a new functional role for elongation factor Tu in protein biosynthesis. Janiak F; Dell VA; Abrahamson JK; Watson BS; Miller DL; Johnson AE Biochemistry; 1990 May; 29(18):4268-77. PubMed ID: 2190631 [TBL] [Abstract][Full Text] [Related]
12. Mutagenesis of glutamine 290 in Escherichia coli and mitochondrial elongation factor Tu affects interactions with mitochondrial aminoacyl-tRNAs and GTPase activity. Hunter SE; Spremulli LL Biochemistry; 2004 Jun; 43(22):6917-27. PubMed ID: 15170329 [TBL] [Abstract][Full Text] [Related]
13. Codon-dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome. Rodnina MV; Fricke R; Kuhn L; Wintermeyer W EMBO J; 1995 Jun; 14(11):2613-9. PubMed ID: 7781613 [TBL] [Abstract][Full Text] [Related]
14. Hydrolysis of GTP on elongation factor Tu.ribosome complexes promoted by 2'(3')-O-L-phenylalanyladenosine. Campuzano S; Modolell J Proc Natl Acad Sci U S A; 1980 Feb; 77(2):905-9. PubMed ID: 6987671 [TBL] [Abstract][Full Text] [Related]
15. The complex formation between Escherichia coli aminoacyl-tRNA, elongation factor Tu and GTP. The effect of the side-chain of the amino acid linked to tRNA. Wagner T; Sprinzl M Eur J Biochem; 1980; 108(1):213-21. PubMed ID: 6773761 [TBL] [Abstract][Full Text] [Related]
16. Effects of antibiotics, N-acetylaminoacyl-tRNA and other agents on the elongation-factor-Tu dependent and ribosome-dependent GTP hydrolysis promoted by 2'(3')-O-L-phenylalanyladenosine. Campuzano S; Modolell J Eur J Biochem; 1981 Jun; 117(1):27-31. PubMed ID: 6114863 [TBL] [Abstract][Full Text] [Related]
17. tRNA and the guanosinetriphosphatase activity of elongation factor Tu. Swart GW; Parmeggiani A Biochemistry; 1989 Jan; 28(1):327-32. PubMed ID: 2539860 [TBL] [Abstract][Full Text] [Related]
18. Enacyloxin IIa, an inhibitor of protein biosynthesis that acts on elongation factor Tu and the ribosome. Cetin R; Krab IM; Anborgh PH; Cool RH; Watanabe T; Sugiyama T; Izaki K; Parmeggiani A EMBO J; 1996 May; 15(10):2604-11. PubMed ID: 8665868 [TBL] [Abstract][Full Text] [Related]
19. The reaction of ribosomes with elongation factor Tu.GTP complexes. Aminoacyl-tRNA-independent reactions in the elongation cycle determine the accuracy of protein synthesis. Thompson RC; Dix DB; Karim AM J Biol Chem; 1986 Apr; 261(11):4868-74. PubMed ID: 3514605 [TBL] [Abstract][Full Text] [Related]
20. Effects of mutagenesis of Gln97 in the switch II region of Escherichia coli elongation factor Tu on its interaction with guanine nucleotides, elongation factor Ts, and aminoacyl-tRNA. Navratil T; Spremulli LL Biochemistry; 2003 Nov; 42(46):13587-95. PubMed ID: 14622005 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]