BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 35452977)

  • 1. Rhizospheric plant-microbe synergistic interactions achieve efficient arsenic phytoextraction by Pteris vittata.
    Yang C; Han N; Inoue C; Yang YL; Nojiri H; Ho YN; Chien MF
    J Hazard Mater; 2022 Jul; 434():128870. PubMed ID: 35452977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cupriavidus basilensis strain r507, a toxic arsenic phytoextraction facilitator, potentiates the arsenic accumulation by Pteris vittata.
    Yang C; Ho YN; Makita R; Inoue C; Chien MF
    Ecotoxicol Environ Saf; 2020 Mar; 190():110075. PubMed ID: 31881405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian network highlights the contributing factors for efficient arsenic phytoextraction by Pteris vittata in a contaminated field.
    Kudo H; Han N; Yokoyama D; Matsumoto T; Chien MF; Kikuchi J; Inoue C
    Sci Total Environ; 2023 Nov; 899():165654. PubMed ID: 37478955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoextraction efficiency of Pteris vittata grown on a naturally As-rich soil and characterization of As-resistant rhizosphere bacteria.
    Antenozio ML; Giannelli G; Marabottini R; Brunetti P; Allevato E; Marzi D; Capobianco G; Bonifazi G; Serranti S; Visioli G; Stazi SR; Cardarelli M
    Sci Rep; 2021 Mar; 11(1):6794. PubMed ID: 33762609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochar-assisted phytoextraction of arsenic in soil using Pteris vittata L.
    Zheng C; Wang X; Liu J; Ji X; Huang B
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):36688-36697. PubMed ID: 31741273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of efficient As solubilization in soils and As accumulation by As-hyperaccumulator Pteris vittata.
    Han YH; Liu X; Rathinasabapathi B; Li HB; Chen Y; Ma LQ
    Environ Pollut; 2017 Aug; 227():569-577. PubMed ID: 28501771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Empirical Evidence of Arsenite Oxidase Gene as an Indicator Accounting for Arsenic Phytoextraction by
    Han N; Yang C; Shimomura S; Inoue C; Chien MF
    Int J Environ Res Public Health; 2022 Feb; 19(3):. PubMed ID: 35162818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoextraction potential of Pteris vittata L. co-planted with woody species for As, Cd, Pb and Zn in contaminated soil.
    Zeng P; Guo Z; Xiao X; Peng C; Feng W; Xin L; Xu Z
    Sci Total Environ; 2019 Feb; 650(Pt 1):594-603. PubMed ID: 30205349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arbuscular mycorrhizal fungi promote arsenic accumulation in Pteris vittata L. through arsenic solubilization in rhizosphere soil and arsenic uptake by hyphae.
    Pan G; Li W; Huang L; Mo G; Wang X
    J Hazard Mater; 2024 Mar; 466():133579. PubMed ID: 38290333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic enhanced plant growth and altered rhizosphere characteristics of hyperaccumulator Pteris vittata.
    Xu JY; Li HB; Liang S; Luo J; Ma LQ
    Environ Pollut; 2014 Nov; 194():105-111. PubMed ID: 25103044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of phytoextraction efficiency coupling
    Liu ZY; Yang R; Xiang XY; Niu LL; Yin DX
    Int J Phytoremediation; 2023; 25(13):1810-1818. PubMed ID: 37066697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactants Enhanced Soil Arsenic Phytoextraction Efficiency by Pteris vittata L.
    Xiang D; Liao S; Tu S; Zhu D; Xie T; Wang G
    Bull Environ Contam Toxicol; 2020 Feb; 104(2):259-264. PubMed ID: 31893300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremediation of arsenic contaminated soil by Pteris vittata L. II. Effect on arsenic uptake and rice yield.
    Mandal A; Purakayastha TJ; Patra AK; Sanyal SK
    Int J Phytoremediation; 2012 Jul; 14(6):621-8. PubMed ID: 22908631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pteris vittata continuously removed arsenic from non-labile fraction in three contaminated-soils during 3.5 years of phytoextraction.
    Lessl JT; Luo J; Ma LQ
    J Hazard Mater; 2014 Aug; 279():485-92. PubMed ID: 25108101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. As-hyperaccumulator Pteris vittata and non-hyperaccumulator Pteris ensiformis under low As-exposure: Transcriptome analysis and implication for As hyperaccumulation.
    Sun D; Zhang X; Yin Z; Feng H; Hu C; Guo N; Tang Y; Qiu R; Ma LQ; Cao Y
    J Hazard Mater; 2023 Sep; 458():132034. PubMed ID: 37453355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of biochar on the arsenic phytoextraction potential of Pteris vittata in soils from an abandoned arsenic mining site.
    Guo G; Chen S; Zhang D; Wang J; Lei M; Ju T; Wei H
    Chemosphere; 2024 Mar; 352():141389. PubMed ID: 38336043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The arsenic hyperaccumulator fern Pteris vittata L.
    Xie QE; Yan XL; Liao XY; Li X
    Environ Sci Technol; 2009 Nov; 43(22):8488-95. PubMed ID: 20028042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacteria associated with Comamonadaceae are key arsenite oxidizer associated with Pteris vittata root.
    Huang D; Sun X; Ghani MU; Li B; Yang J; Chen Z; Kong T; Xiao E; Liu H; Wang Q; Sun W
    Environ Pollut; 2024 May; 349():123909. PubMed ID: 38582183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effectiveness of applying arsenate reducing bacteria to enhance arsenic removal from polluted soils by Pteris vittata L.
    Yang Q; Tu S; Wang G; Liao X; Yan X
    Int J Phytoremediation; 2012 Jan; 14(1):89-99. PubMed ID: 22567697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intercropping efficiency of four arsenic hyperaccumulator Pteris vittata populations as intercrops with Morus alba.
    Wan X; Lei M
    Environ Sci Pollut Res Int; 2018 May; 25(13):12600-12611. PubMed ID: 29468391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.