These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 3545316)
1. In vitro studies on the subcellular location of glucosidase I and glucosidase II in dog pancreas. Bause E; Günther R; Schweden J; Tillmann U Biosci Rep; 1986 Sep; 6(9):827-34. PubMed ID: 3545316 [TBL] [Abstract][Full Text] [Related]
2. Subcellular location of enzymes involved in the N-glycosylation and processing of asparagine-linked oligosaccharides in Saccharomyces cerevisiae. Tillmann U; Günther R; Schweden J; Bause E Eur J Biochem; 1987 Feb; 162(3):635-42. PubMed ID: 3549291 [TBL] [Abstract][Full Text] [Related]
3. Cloning and expression of glucosidase I from human hippocampus. Kalz-Füller B; Bieberich E; Bause E Eur J Biochem; 1995 Jul; 231(2):344-51. PubMed ID: 7635146 [TBL] [Abstract][Full Text] [Related]
4. In vitro protein translocation across the yeast endoplasmic reticulum: ATP-dependent posttranslational translocation of the prepro-alpha-factor. Hansen W; Garcia PD; Walter P Cell; 1986 May; 45(3):397-406. PubMed ID: 3009026 [TBL] [Abstract][Full Text] [Related]
5. Pre-Golgi degradation of yeast prepro-alpha-factor expressed in a mammalian cell. Influence of cell type-specific oligosaccharide processing on intracellular fate. Su K; Stoller T; Rocco J; Zemsky J; Green R J Biol Chem; 1993 Jul; 268(19):14301-9. PubMed ID: 8314793 [TBL] [Abstract][Full Text] [Related]
6. Prepro-alpha-factor has a cleavable signal sequence. Waters MG; Evans EA; Blobel G J Biol Chem; 1988 May; 263(13):6209-14. PubMed ID: 3283123 [TBL] [Abstract][Full Text] [Related]
7. Characterization of calf liver glucosidase I and its inhibition by basic sugar analogs. Schweden J; Borgmann C; Legler G; Bause E Arch Biochem Biophys; 1986 Jul; 248(1):335-40. PubMed ID: 2942110 [TBL] [Abstract][Full Text] [Related]
8. Binding residues and catalytic domain of soluble Saccharomyces cerevisiae processing alpha-glucosidase I. Faridmoayer A; Scaman CH Glycobiology; 2005 Dec; 15(12):1341-8. PubMed ID: 16014748 [TBL] [Abstract][Full Text] [Related]
9. Secretory protein translocation in a yeast cell-free system can occur posttranslationally and requires ATP hydrolysis. Waters MG; Blobel G J Cell Biol; 1986 May; 102(5):1543-50. PubMed ID: 3517001 [TBL] [Abstract][Full Text] [Related]
10. Glycosylation and processing of prepro-alpha-factor through the yeast secretory pathway. Julius D; Schekman R; Thorner J Cell; 1984 Feb; 36(2):309-18. PubMed ID: 6420074 [TBL] [Abstract][Full Text] [Related]
11. Secretion in yeast: reconstitution of the translocation and glycosylation of alpha-factor and invertase in a homologous cell-free system. Rothblatt JA; Meyer DI Cell; 1986 Feb; 44(4):619-28. PubMed ID: 3512097 [TBL] [Abstract][Full Text] [Related]
12. Affinity purification and characterization of glucosidase II from pig liver. Hentges A; Bause E Biol Chem; 1997 Sep; 378(9):1031-8. PubMed ID: 9348113 [TBL] [Abstract][Full Text] [Related]
13. Structural requirements for protein N-glycosylation. Influence of acceptor peptides on cotranslational glycosylation of yeast invertase and site-directed mutagenesis around a sequon sequence. Roitsch T; Lehle L Eur J Biochem; 1989 May; 181(2):525-9. PubMed ID: 2653831 [TBL] [Abstract][Full Text] [Related]
14. Secretory protein translocation in a neurospora crassa in vitro system. Hydrolysis of a nucleoside triphosphate is required for posttranslational translocation. Addison R J Biol Chem; 1987 Dec; 262(35):17031-7. PubMed ID: 2960680 [TBL] [Abstract][Full Text] [Related]
15. Secretion in yeast: translocation and glycosylation of prepro-alpha-factor in vitro can occur via an ATP-dependent post-translational mechanism. Rothblatt JA; Meyer DI EMBO J; 1986 May; 5(5):1031-6. PubMed ID: 15957217 [TBL] [Abstract][Full Text] [Related]
16. Cell wall 1,6-beta-glucan synthesis in Saccharomyces cerevisiae depends on ER glucosidases I and II, and the molecular chaperone BiP/Kar2p. Simons JF; Ebersold M; Helenius A EMBO J; 1998 Jan; 17(2):396-405. PubMed ID: 9430631 [TBL] [Abstract][Full Text] [Related]
17. Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. McCracken AA; Brodsky JL J Cell Biol; 1996 Feb; 132(3):291-8. PubMed ID: 8636208 [TBL] [Abstract][Full Text] [Related]
18. Multiple genes are required for proper insertion of secretory proteins into the endoplasmic reticulum in yeast. Rothblatt JA; Deshaies RJ; Sanders SL; Daum G; Schekman R J Cell Biol; 1989 Dec; 109(6 Pt 1):2641-52. PubMed ID: 2687285 [TBL] [Abstract][Full Text] [Related]
19. Efficient translocation and processing with Xenopus egg extracts of proteins synthesized in rabbit reticulocyte lysate. Zhou X; Tsuda S; Bala N; Arakaki RF In Vitro Cell Dev Biol Anim; 2000 May; 36(5):293-8. PubMed ID: 10937832 [TBL] [Abstract][Full Text] [Related]
20. Intracellular trafficking and metabolic turnover of yeast prepro-alpha-factor-SRIF precursors in GH3 cells. Lee MA; Cheong KH; Shields D; Park SD; Hong SH Exp Mol Med; 2002 Sep; 34(4):285-93. PubMed ID: 12515394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]