BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 3545316)

  • 1. In vitro studies on the subcellular location of glucosidase I and glucosidase II in dog pancreas.
    Bause E; Günther R; Schweden J; Tillmann U
    Biosci Rep; 1986 Sep; 6(9):827-34. PubMed ID: 3545316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subcellular location of enzymes involved in the N-glycosylation and processing of asparagine-linked oligosaccharides in Saccharomyces cerevisiae.
    Tillmann U; Günther R; Schweden J; Bause E
    Eur J Biochem; 1987 Feb; 162(3):635-42. PubMed ID: 3549291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and expression of glucosidase I from human hippocampus.
    Kalz-Füller B; Bieberich E; Bause E
    Eur J Biochem; 1995 Jul; 231(2):344-51. PubMed ID: 7635146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro protein translocation across the yeast endoplasmic reticulum: ATP-dependent posttranslational translocation of the prepro-alpha-factor.
    Hansen W; Garcia PD; Walter P
    Cell; 1986 May; 45(3):397-406. PubMed ID: 3009026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pre-Golgi degradation of yeast prepro-alpha-factor expressed in a mammalian cell. Influence of cell type-specific oligosaccharide processing on intracellular fate.
    Su K; Stoller T; Rocco J; Zemsky J; Green R
    J Biol Chem; 1993 Jul; 268(19):14301-9. PubMed ID: 8314793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prepro-alpha-factor has a cleavable signal sequence.
    Waters MG; Evans EA; Blobel G
    J Biol Chem; 1988 May; 263(13):6209-14. PubMed ID: 3283123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of calf liver glucosidase I and its inhibition by basic sugar analogs.
    Schweden J; Borgmann C; Legler G; Bause E
    Arch Biochem Biophys; 1986 Jul; 248(1):335-40. PubMed ID: 2942110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding residues and catalytic domain of soluble Saccharomyces cerevisiae processing alpha-glucosidase I.
    Faridmoayer A; Scaman CH
    Glycobiology; 2005 Dec; 15(12):1341-8. PubMed ID: 16014748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Secretory protein translocation in a yeast cell-free system can occur posttranslationally and requires ATP hydrolysis.
    Waters MG; Blobel G
    J Cell Biol; 1986 May; 102(5):1543-50. PubMed ID: 3517001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycosylation and processing of prepro-alpha-factor through the yeast secretory pathway.
    Julius D; Schekman R; Thorner J
    Cell; 1984 Feb; 36(2):309-18. PubMed ID: 6420074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Secretion in yeast: reconstitution of the translocation and glycosylation of alpha-factor and invertase in a homologous cell-free system.
    Rothblatt JA; Meyer DI
    Cell; 1986 Feb; 44(4):619-28. PubMed ID: 3512097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Affinity purification and characterization of glucosidase II from pig liver.
    Hentges A; Bause E
    Biol Chem; 1997 Sep; 378(9):1031-8. PubMed ID: 9348113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural requirements for protein N-glycosylation. Influence of acceptor peptides on cotranslational glycosylation of yeast invertase and site-directed mutagenesis around a sequon sequence.
    Roitsch T; Lehle L
    Eur J Biochem; 1989 May; 181(2):525-9. PubMed ID: 2653831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secretory protein translocation in a neurospora crassa in vitro system. Hydrolysis of a nucleoside triphosphate is required for posttranslational translocation.
    Addison R
    J Biol Chem; 1987 Dec; 262(35):17031-7. PubMed ID: 2960680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secretion in yeast: translocation and glycosylation of prepro-alpha-factor in vitro can occur via an ATP-dependent post-translational mechanism.
    Rothblatt JA; Meyer DI
    EMBO J; 1986 May; 5(5):1031-6. PubMed ID: 15957217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell wall 1,6-beta-glucan synthesis in Saccharomyces cerevisiae depends on ER glucosidases I and II, and the molecular chaperone BiP/Kar2p.
    Simons JF; Ebersold M; Helenius A
    EMBO J; 1998 Jan; 17(2):396-405. PubMed ID: 9430631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP.
    McCracken AA; Brodsky JL
    J Cell Biol; 1996 Feb; 132(3):291-8. PubMed ID: 8636208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple genes are required for proper insertion of secretory proteins into the endoplasmic reticulum in yeast.
    Rothblatt JA; Deshaies RJ; Sanders SL; Daum G; Schekman R
    J Cell Biol; 1989 Dec; 109(6 Pt 1):2641-52. PubMed ID: 2687285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient translocation and processing with Xenopus egg extracts of proteins synthesized in rabbit reticulocyte lysate.
    Zhou X; Tsuda S; Bala N; Arakaki RF
    In Vitro Cell Dev Biol Anim; 2000 May; 36(5):293-8. PubMed ID: 10937832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular trafficking and metabolic turnover of yeast prepro-alpha-factor-SRIF precursors in GH3 cells.
    Lee MA; Cheong KH; Shields D; Park SD; Hong SH
    Exp Mol Med; 2002 Sep; 34(4):285-93. PubMed ID: 12515394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.