BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 35453355)

  • 1. Is Nucleoredoxin a Master Regulator of Cellular Redox Homeostasis? Its Implication in Different Pathologies.
    Idelfonso-García OG; Alarcón-Sánchez BR; Vásquez-Garzón VR; Baltiérrez-Hoyos R; Villa-Treviño S; Muriel P; Serrano H; Pérez-Carreón JI; Arellanes-Robledo J
    Antioxidants (Basel); 2022 Mar; 11(4):. PubMed ID: 35453355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flightless-I is a potential biomarker for the early detection of alcoholic liver disease.
    Arellanes-Robledo J; Ibrahim J; Reyes-Gordillo K; Shah R; Leckey L; Lakshman MR
    Biochem Pharmacol; 2021 Jan; 183():114323. PubMed ID: 33166508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethanol targets nucleoredoxin/dishevelled interactions and stimulates phosphatidylinositol 4-phosphate production in vivo and in vitro.
    Arellanes-Robledo J; Reyes-Gordillo K; Ibrahim J; Leckey L; Shah R; Lakshman MR
    Biochem Pharmacol; 2018 Oct; 156():135-146. PubMed ID: 30125555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced exploratory behavior in neuronal nucleoredoxin knockout mice.
    Tran BN; Valek L; Wilken-Schmitz A; Fuhrmann DC; Namgaladze D; Wittig I; Tegeder I
    Redox Biol; 2021 Sep; 45():102054. PubMed ID: 34198070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleoredoxin interaction with flightless-I/actin complex is differentially altered in alcoholic liver disease.
    Alarcón-Sánchez BR; Guerrero-Escalera D; Rosas-Madrigal S; Ivette Aparicio-Bautista D; Reyes-Gordillo K; Lakshman MR; Ortiz-Fernández A; Quezada H; Medina-Contreras Ó; Villa-Treviño S; Isael Pérez-Carreón J; Arellanes-Robledo J
    Basic Clin Pharmacol Toxicol; 2020 Nov; 127(5):389-404. PubMed ID: 32524749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibrogenic actions of acetaldehyde are β-catenin dependent but Wingless independent: a critical role of nucleoredoxin and reactive oxygen species in human hepatic stellate cells.
    Arellanes-Robledo J; Reyes-Gordillo K; Shah R; Domínguez-Rosales JA; Hernández-Nazara ZH; Ramirez F; Rojkind M; Lakshman MR
    Free Radic Biol Med; 2013 Dec; 65():1487-1496. PubMed ID: 23880292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleoredoxin regulates glucose metabolism via phosphofructokinase 1.
    Funato Y; Hayashi T; Irino Y; Takenawa T; Miki H
    Biochem Biophys Res Commun; 2013 Nov; 440(4):737-42. PubMed ID: 24120946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cold avoidance and heat pain hypersensitivity in neuronal nucleoredoxin knockout mice.
    Valek L; Tran BN; Tegeder I
    Free Radic Biol Med; 2022 Nov; 192():84-97. PubMed ID: 36126861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleoredoxin Knockdown in SH-SY5Y Cells Promotes Cell Renewal.
    Valek L; Tegeder I
    Antioxidants (Basel); 2021 Mar; 10(3):. PubMed ID: 33805811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ascorbic acid alters cell fate commitment of human neural progenitors in a WNT/β-catenin/ROS signaling dependent manner.
    Rharass T; Lantow M; Gbankoto A; Weiss DG; Panáková D; Lucas S
    J Biomed Sci; 2017 Oct; 24(1):78. PubMed ID: 29037191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox sensitivity of the MyD88 immune signaling adapter.
    Stottmeier B; Dick TP
    Free Radic Biol Med; 2016 Dec; 101():93-101. PubMed ID: 27720842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NXN Gene Epigenetic Changes in an Adult Neurogenesis Model of Alzheimer's Disease.
    Blanco-Luquin I; Acha B; Urdánoz-Casado A; Gómez-Orte E; Roldan M; Pérez-Rodríguez DR; Cabello J; Mendioroz M
    Cells; 2022 Mar; 11(7):. PubMed ID: 35406633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleoredoxin negatively regulates Toll-like receptor 4 signaling via recruitment of flightless-I to myeloid differentiation primary response gene (88).
    Hayashi T; Funato Y; Terabayashi T; Morinaka A; Sakamoto R; Ichise H; Fukuda H; Yoshida N; Miki H
    J Biol Chem; 2010 Jun; 285(24):18586-93. PubMed ID: 20400501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. STRIPAK complexes: structure, biological function, and involvement in human diseases.
    Hwang J; Pallas DC
    Int J Biochem Cell Biol; 2014 Feb; 47():118-48. PubMed ID: 24333164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TXNIP/TBP-2: A Master Regulator for Glucose Homeostasis.
    Yoshihara E
    Antioxidants (Basel); 2020 Aug; 9(8):. PubMed ID: 32824669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thioredoxin/Txnip: redoxisome, as a redox switch for the pathogenesis of diseases.
    Yoshihara E; Masaki S; Matsuo Y; Chen Z; Tian H; Yodoi J
    Front Immunol; 2014 Jan; 4():514. PubMed ID: 24409188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrative RNA profiling of TBEV-infected neurons and astrocytes reveals potential pathogenic effectors.
    Selinger M; Věchtová P; Tykalová H; Ošlejšková P; Rumlová M; Štěrba J; Grubhoffer L
    Comput Struct Biotechnol J; 2022; 20():2759-2777. PubMed ID: 35685361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance.
    Lee S; Kim SM; Lee RT
    Antioxid Redox Signal; 2013 Apr; 18(10):1165-207. PubMed ID: 22607099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flightless I homolog negatively regulates ChREBP activity in cancer cells.
    Wu L; Chen H; Zhu Y; Meng J; Li Y; Li M; Yang D; Zhang P; Feng M; Tong X
    Int J Biochem Cell Biol; 2013 Nov; 45(11):2688-97. PubMed ID: 24055811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.