These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 35454077)

  • 41. Effects of dihydropyridine receptor II-III loop peptides on Ca(2+) release in skinned skeletal muscle fibers.
    Lamb GD; El-Hayek R; Ikemoto N; Stephenson DG
    Am J Physiol Cell Physiol; 2000 Oct; 279(4):C891-905. PubMed ID: 11003569
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sarcoplasmic reticulum function in newborn ferret cremaster skeletal muscles.
    Huchet C; Léoty C
    Eur J Pharmacol; 1994 Dec; 271(1):141-9. PubMed ID: 7698197
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ca
    Treves S; Jungbluth H; Voermans N; Muntoni F; Zorzato F
    Semin Cell Dev Biol; 2017 Apr; 64():201-212. PubMed ID: 27427513
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Morphology and molecular composition of sarcoplasmic reticulum surface junctions in the absence of DHPR and RyR in mouse skeletal muscle.
    Felder E; Protasi F; Hirsch R; Franzini-Armstrong C; Allen PD
    Biophys J; 2002 Jun; 82(6):3144-9. PubMed ID: 12023238
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanisms of stimulated 45Ca efflux in skinned skeletal muscle fibers.
    Stephenson EW
    Can J Physiol Pharmacol; 1987 Apr; 65(4):632-41. PubMed ID: 2440538
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Thienylhydrazone derivative increases sarcoplasmic reticulum Ca2+ release in mammalian skeletal muscle.
    Zapata-Sudo G; Sudo RT; Maronas PA; Silva GL; Moreira OR; Aguiar MI; Barreiro EJ
    Eur J Pharmacol; 2003 May; 470(1-2):79-85. PubMed ID: 12787834
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Impaired Intracellular Ca
    Pierantozzi E; Szentesi P; Paolini C; Dienes B; Fodor J; Oláh T; Colombini B; Rassier DE; Rubino EM; Lange S; Rossi D; Csernoch L; Bagni MA; Reggiani C; Sorrentino V
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163243
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sarcoplasmic reticulum function in slow- and fast-twitch skeletal muscles from mdx mice.
    Divet A; Huchet-Cadiou C
    Pflugers Arch; 2002 Aug; 444(5):634-43. PubMed ID: 12194017
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ca
    Avila G; de la Rosa JA; Monsalvo-Villegas A; Montiel-Jaen MG
    Cells; 2019 Dec; 9(1):. PubMed ID: 31878335
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The ESCRT-II proteins are involved in shaping the sarcoplasmic reticulum in C. elegans.
    Lefebvre C; Largeau C; Michelet X; Fourrage C; Maniere X; Matic I; Legouis R; Culetto E
    J Cell Sci; 2016 Apr; 129(7):1490-9. PubMed ID: 26906413
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ca
    Kutchukian C; Szentesi P; Allard B; Buj-Bello A; Csernoch L; Jacquemond V
    Cell Calcium; 2019 Jun; 80():91-100. PubMed ID: 30999217
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dantrolene inhibition of sarcoplasmic reticulum Ca2+ release by direct and specific action at skeletal muscle ryanodine receptors.
    Fruen BR; Mickelson JR; Louis CF
    J Biol Chem; 1997 Oct; 272(43):26965-71. PubMed ID: 9341133
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fluvastatin and atorvastatin affect calcium homeostasis of rat skeletal muscle fibers in vivo and in vitro by impairing the sarcoplasmic reticulum/mitochondria Ca2+-release system.
    Liantonio A; Giannuzzi V; Cippone V; Camerino GM; Pierno S; Camerino DC
    J Pharmacol Exp Ther; 2007 May; 321(2):626-34. PubMed ID: 17293561
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Massive alterations of sarcoplasmic reticulum free calcium in skeletal muscle fibers lacking calsequestrin revealed by a genetically encoded probe.
    Canato M; Scorzeto M; Giacomello M; Protasi F; Reggiani C; Stienen GJ
    Proc Natl Acad Sci U S A; 2010 Dec; 107(51):22326-31. PubMed ID: 21135222
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanism of calcium release from skeletal sarcoplasmic reticulum.
    Miyamoto H; Racker E
    J Membr Biol; 1982; 66(3):193-201. PubMed ID: 6284941
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phosphoinositides in Ca(2+) signaling and excitation-contraction coupling in skeletal muscle: an old player and newcomers.
    Csernoch L; Jacquemond V
    J Muscle Res Cell Motil; 2015 Dec; 36(6):491-9. PubMed ID: 26377756
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure of RyR1 in native membranes.
    Chen W; Kudryashev M
    EMBO Rep; 2020 May; 21(5):e49891. PubMed ID: 32147968
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Calsequestrin binds to monomeric and complexed forms of key calcium-handling proteins in native sarcoplasmic reticulum membranes from rabbit skeletal muscle.
    Glover L; Culligan K; Cala S; Mulvey C; Ohlendieck K
    Biochim Biophys Acta; 2001 Dec; 1515(2):120-32. PubMed ID: 11718668
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Two mechanisms for termination of individual Ca2+ sparks in skeletal muscle.
    Lacampagne A; Klein MG; Ward CW; Schneider MF
    Proc Natl Acad Sci U S A; 2000 Jul; 97(14):7823-8. PubMed ID: 10884414
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Triadin binding to the C-terminal luminal loop of the ryanodine receptor is important for skeletal muscle excitation contraction coupling.
    Goonasekera SA; Beard NA; Groom L; Kimura T; Lyfenko AD; Rosenfeld A; Marty I; Dulhunty AF; Dirksen RT
    J Gen Physiol; 2007 Oct; 130(4):365-78. PubMed ID: 17846166
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.