These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35454203)

  • 1. Associations of Protein Molecular Structures with Their Nutrient Supply and Biodegradation Characteristics in Different Byproducts of Seed-Used Pumpkin.
    Li Y; Wu Q; Lv J; Jia X; Gao J; Zhang Y; Wang L
    Animals (Basel); 2022 Apr; 12(8):. PubMed ID: 35454203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular basis of protein structure in combined feeds (hulless barley with bioethanol coproduct of wheat dried distillers grains with solubles) in relation to protein rumen degradation kinetics and intestinal availability in dairy cattle.
    Zhang X; Yu P
    J Dairy Sci; 2012 Jun; 95(6):3363-79. PubMed ID: 22612970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using advanced vibrational molecular spectroscopy (ATR-Ft/IRS and synchrotron SR-IMS) to study an interaction between protein molecular structure from biodegradation residues and nutritional properties of cool-climate adapted faba bean seeds.
    Deng G; Rodríguez-Espinosa ME; Yan M; Lei Y; Guevara-Oquendo VH; Feng X; Zhang H; Deng H; Zhang W; Samadi ; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():117935. PubMed ID: 31951940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using advanced vibrational molecular spectroscopy (ATR-Ft/IRS) to study heating process induced changes on protein molecular structure of biodegradation residues in cool-climate adapted faba bean seeds: Relationship with rumen and intestinal protein digestion in ruminant systems.
    Deng G; Rodríguez-Espinosa ME; Feng X; Guevara-Oquendo VH; Lei Y; Yan M; Yang JC; Zhang H; Deng H; Zhang W; Peng Q; Samadi ; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jun; 234():118220. PubMed ID: 32200231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-destructive analysis of the conformational differences among feedstock sources and their corresponding co-products from bioethanol production with molecular spectroscopy.
    Gamage IH; Jonker A; Zhang X; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():407-21. PubMed ID: 24076457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on Brassica carinata seed. 1. Protein molecular structure in relation to protein nutritive values and metabolic characteristics.
    Xin H; Falk KC; Yu P
    J Agric Food Chem; 2013 Oct; 61(42):10118-26. PubMed ID: 24059852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Moist and dry heating-induced changes in protein molecular structure, protein subfractions, and nutrient profiles in camelina seeds.
    Peng Q; Khan NA; Wang Z; Yu P
    J Dairy Sci; 2014; 97(1):446-57. PubMed ID: 24239075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular spectroscopic investigation on fractionation-induced changes on biomacromolecule of co-products from bioethanol processing to explore protein metabolism in ruminants.
    Zhang X; Yan X; Beltranena E; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Mar; 122():591-7. PubMed ID: 24334060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutritional Values of Industrial Hemp Byproducts for Dairy Cattle.
    Wang Y; Gao J; Cheng C; Lv J; Lambo MT; Zhang G; Li Y; Zhang Y
    Animals (Basel); 2022 Dec; 12(24):. PubMed ID: 36552408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dry and moist heating-induced changes in protein molecular structure, protein subfraction, and nutrient profiles in soybeans.
    Samadi ; Yu P
    J Dairy Sci; 2011 Dec; 94(12):6092-102. PubMed ID: 22118096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detect the sensitivity and response of protein molecular structure of whole canola seed (yellow and brown) to different heat processing methods and relation to protein utilization and availability using ATR-FT/IR molecular spectroscopy with chemometrics.
    Samadi ; Theodoridou K; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Mar; 105():304-13. PubMed ID: 23318774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnitude Differences in Bioactive Compounds, Chemical Functional Groups, Fatty Acid Profiles, Nutrient Degradation and Digestion, Molecular Structure, and Metabolic Characteristics of Protein in Newly Developed Yellow-Seeded and Black-Seeded Canola Lines.
    Theodoridou K; Zhang X; Vail S; Yu P
    J Agric Food Chem; 2015 Jun; 63(22):5476-84. PubMed ID: 25996818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship of protein molecular structure to metabolisable proteins in different types of dried distillers grains with solubles: a novel approach.
    Yu P; Nuez-Ortín WG
    Br J Nutr; 2010 Nov; 104(10):1429-37. PubMed ID: 20594396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the Spectroscopic Information on Functional Groups Related to Carbohydrates in Different Morphological Fractions of Corn Stover and Their Relationship to Nutrient Supply and Biodegradation Characteristics.
    Xin H; Ding X; Zhang L; Sun F; Wang X; Zhang Y
    J Agric Food Chem; 2017 May; 65(20):4035-4043. PubMed ID: 28343395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular spectroscopic features of protein in newly developed chickpea: Relationship with protein chemical profile and metabolism in the rumen and intestine of dairy cows.
    Sun B; Khan NA; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 196():168-177. PubMed ID: 29448169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein secondary structures (alpha-helix and beta-sheet) at a cellular level and protein fractions in relation to rumen degradation behaviours of protein: a new approach.
    Yu P
    Br J Nutr; 2005 Nov; 94(5):655-65. PubMed ID: 16277766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of intrinsic molecular structure spectral profiles of feedstocks and co-products from canola bio-oil processing: impacted by source origin.
    de Oliveira AMRCB; Yu P
    Anim Biosci; 2023 Feb; 36(2):256-263. PubMed ID: 35798034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitation of relationship and development of nutrient prediction with vibrational molecular structure spectral profiles of feedstocks and co-products from canola bio-oil processing.
    de Oliveira AMRCB; Yu P
    Anim Biosci; 2023 Mar; 36(3):451-460. PubMed ID: 35798035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactive Curve-Linear Relationship Between Alteration of Carbohydrate Macromolecular Structure Traits in Hulless Barley (
    Sun B; Prates LL; Yu P
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30889938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multicomponent peak modeling of protein secondary structures: comparison of gaussian with lorentzian analytical methods for plant feed and seed molecular biology and chemistry research.
    Yu P
    Appl Spectrosc; 2005 Nov; 59(11):1372-80. PubMed ID: 16316515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.