These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35454203)

  • 21. Chemical profile, energy values, and protein molecular structure characteristics of biofuel/bio-oil co-products (carinata meal) in comparison with canola meal.
    Xin H; Yu P
    J Agric Food Chem; 2013 Apr; 61(16):3926-33. PubMed ID: 23581565
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular basis of protein structure in proanthocyanidin and anthocyanin-enhanced Lc-transgenic alfalfa in relation to nutritive value using synchrotron-radiation FTIR microspectroscopy: a novel approach.
    Yu P; Jonker A; Gruber M
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 73(5):846-53. PubMed ID: 19457717
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vibrational spectroscopic study on feed molecular structure properties of oil-seeds and co-products from Canadian and Chinese bio-processing and relationship with protein and carbohydrate degradation fractions in ruminant systems.
    Gomaa WMS; Zhang X; Deng H; Peng Q; Mosaad GM; Zhang H; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 216():249-257. PubMed ID: 30904632
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular chemical structure of barley proteins revealed by ultra-spatially resolved synchrotron light sourced FTIR microspectroscopy: comparison of barley varieties.
    Yu P
    Biopolymers; 2007 Mar; 85(4):308-17. PubMed ID: 17183514
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differentiation of mixtures of co-product blend with barley grain based on Fourier transform infrared attenuated total reflection molecular spectroscopy: carbohydrate molecular spectral profiles and nutritive characteristics in dairy cattle.
    Zhang X; Yu P
    J Dairy Sci; 2012 Nov; 95(11):6624-34. PubMed ID: 22921618
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using Mid-IR spectroscopy (ATR-FTIR) as a fast analytical tool to reveal association between protein spectral profiles and metabolizable protein supply, protein rumen degradation characteristics and estimated intestinal protein digestion before and after rumen incubation of faba bean partitions and faba bean silage.
    Yan M; Guevara-Oquendo VH; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 May; 273():121022. PubMed ID: 35228082
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Infrared attenuated total reflection spectroscopic analysis and quantitative detection of forage spectral features in ruminant systems.
    Ji C; Deng G; Guevara-Oquendo VH; Zhang X; Yan X; Zhang H; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117630. PubMed ID: 31761542
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular basis of structural makeup of hulless barley in relation to rumen degradation kinetics and intestinal availability in dairy cattle: A novel approach.
    Damiran D; Yu P
    J Dairy Sci; 2011 Oct; 94(10):5151-9. PubMed ID: 21943765
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of the microchemical structure of seed endosperm within a cellular dimension among six barley varieties with distinct degradation kinetics, using ultraspatially resolved synchrotron-based infrared microspectroscopy.
    Liu N; Yu P
    J Agric Food Chem; 2010 Jul; 58(13):7801-10. PubMed ID: 20524612
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application potential of ATR-FT/IR molecular spectroscopy in animal nutrition: revelation of protein molecular structures of canola meal and presscake, as affected by heat-processing methods, in relationship with their protein digestive behavior and utilization for dairy cattle.
    Theodoridou K; Yu P
    J Agric Food Chem; 2013 Jun; 61(23):5449-58. PubMed ID: 23683050
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heat-induced protein structure and subfractions in relation to protein degradation kinetics and intestinal availability in dairy cattle.
    Doiron K; Yu P; McKinnon JJ; Christensen DA
    J Dairy Sci; 2009 Jul; 92(7):3319-30. PubMed ID: 19528609
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein molecular structure, degradation and availability of canola, rapeseed and soybean meals in dairy cattle diets.
    Tian Y; Zhang X; Huang R; Yu P
    Asian-Australas J Anim Sci; 2019 Sep; 32(9):1381-1388. PubMed ID: 30744328
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Studies on Brassica carinata seed. 2. Carbohydrate molecular structure in relation to carbohydrate chemical profile, energy values, and biodegradation characteristics.
    Xin H; Falk KC; Yu P
    J Agric Food Chem; 2013 Oct; 61(42):10127-34. PubMed ID: 24059242
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of the nutritional value of faba beans with high and low tannin content for use as feed for ruminants.
    Xin H; Khan NA; Yu P
    J Sci Food Agric; 2022 May; 102(7):3047-3056. PubMed ID: 34775593
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using a non-invasive technique in nutrition: synchrotron radiation infrared microspectroscopy spectroscopic characterization of oil seeds treated with different processing conditions on molecular spectral factors influencing nutrient delivery.
    Zhang X; Yu P
    J Agric Food Chem; 2014 Jul; 62(26):6199-205. PubMed ID: 24920208
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular structure, chemical and nutrient profiles, and metabolic characteristics of the proteins and energy in new cool-season corn varieties harvested as fresh forage for dairy cattle.
    Abeysekara S; Christensen DA; Niu Z; Theodoridou K; Yu P
    J Dairy Sci; 2013 Oct; 96(10):6631-43. PubMed ID: 23958021
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of advanced synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy to animal nutrition and feed science: a novel approach.
    Yu P
    Br J Nutr; 2004 Dec; 92(6):869-85. PubMed ID: 15613249
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid characterization of molecular chemistry, nutrient make-up and microlocation of internal seed tissue.
    Yu P; Block H; Niu Z; Doiron K
    J Synchrotron Radiat; 2007 Jul; 14(Pt 4):382-90. PubMed ID: 17587665
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relationship of carbohydrates and lignin molecular structure spectral profiles to nutrient profile in newly developed oats cultivars and barley grain.
    Prates LL; Refat B; Lei Y; Louzada-Prates M; Yu P
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 188():495-506. PubMed ID: 28759851
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural makeup, biopolymer conformation, and biodegradation characteristics of a newly developed super genotype of oats (CDC SO-I versus conventional varieties): a novel approach.
    Damiran D; Yu P
    J Agric Food Chem; 2010 Feb; 58(4):2377-87. PubMed ID: 20095614
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.