These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35454424)

  • 1. Using Artificial Intelligence Techniques to Predict Punching Shear Capacity of Lightweight Concrete Slabs.
    Ebid A; Deifalla A
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning base models to predict the punching shear capacity of posttensioned UHPC flat slabs.
    Ors DM; Ramadan M; Maree AMF; Zaher AH; Afifi A; Ebid AM
    Sci Rep; 2024 Feb; 14(1):3969. PubMed ID: 38368475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Punching Shear Behavior of Slabs Made from Different Types of Concrete Internally Reinforced with SHCC-Filled Steel Tubes.
    Elsamak G; Abdullah A; Salama MI; Hu JW; El-Mandouh MA
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect on punching shear failure in centrally loaded ground-supported concrete slabs for different aspects like slab thickness, size and the position of reinforcement bar, and the strength of concrete using a validated FE model.
    Shahiduzzaman M; Hossain MS
    Heliyon; 2024 Feb; 10(4):e26057. PubMed ID: 38404849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Punching Shear Behavior of Two-Way Concrete Slabs Reinforced with Glass-Fiber-Reinforced Polymer (GFRP) Bars.
    Ju M; Park K; Park C
    Polymers (Basel); 2018 Aug; 10(8):. PubMed ID: 30960819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Feature Selection Approach Based on Tree Models for Evaluating the Punching Shear Capacity of Steel Fiber-Reinforced Concrete Flat Slabs.
    Lu S; Koopialipoor M; Asteris PG; Bahri M; Armaghani DJ
    Materials (Basel); 2020 Sep; 13(17):. PubMed ID: 32899331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Punching Shear Failure Analysis of Reinforced Concrete Slabs under Close-in Explosion.
    Liu S; Xu X; Zhou B; Yang K
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Punching Shear Strength of FRP-Reinforced Concrete Slabs without Shear Reinforcements: A Reliability Assessment.
    Alkhatib S; Deifalla A
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental quantification of punching shear capacity for large-scale GFRP-reinforced flat slabs made of synthetic fiber-reinforced self-compacting concrete dataset.
    AlHamaydeh M; Orabi MA
    Data Brief; 2021 Aug; 37():107196. PubMed ID: 34169128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A New Composite Slab Using Crushed Waste Tires as Fine Aggregate in Self-Compacting Lightweight Aggregate Concrete.
    Lv J; Zhou T; Wu H; Sang L; He Z; Li G; Li K
    Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32503286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictive modeling of wide-shallow RC beams shear strength considering stirrups effect using (FEM-ML) approach.
    Soliman AA; Mansour DM; Khalil AH; Ebid A
    Sci Rep; 2024 May; 14(1):12523. PubMed ID: 38821974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing and Prediction of Shear Performance for Steel Fiber Reinforced Expanded-Shale Lightweight Concrete Beams without Web Reinforcements.
    Li X; Li C; Zhao M; Yang H; Zhou S
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31096660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction Model for Mechanical Properties of Lightweight Aggregate Concrete Using Artificial Neural Network.
    Yoon JY; Kim H; Lee YJ; Sim SH
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31443400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Shear Capacity of Steel Fiber Reinforced Concrete Beams without Stirrups Using Artificial Intelligence Models.
    Yu Y; Zhao XY; Xu JJ; Wang SC; Xie TY
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved Shear Strength Prediction Model of Steel Fiber Reinforced Concrete Beams by Adopting Gene Expression Programming.
    Tariq M; Khan A; Ullah A; Shayanfar J; Niaz M
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Study on One-Way BFRP Bar-Reinforced UHPC Slabs under Concentrated Load.
    Xu X; Hou Z
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32664241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geopolymer Concrete with Lightweight Fine Aggregate: Material Performance and Structural Application.
    Youssf O; Mills JE; Elchalakani M; Alanazi F; Yosri AM
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fiber Reinforced Polymer Laminates for Strengthening of RC Slabs against Punching Shear: A Review.
    Mohamed OA; Kewalramani M; Khattab R
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32204432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact response of lightweight steel foam concrete composite slabs: Experimental, numerical and analytical studies.
    Meng L; Wang L; Chen J; Xu Q; Liu B; Yang M; Yang S; Zhang Z
    PLoS One; 2024; 19(1):e0296303. PubMed ID: 38215080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction and developing of shear strength of reinforced high strength concrete beams with and without steel fibers using multiple mathematical models.
    Saber AZ
    PLoS One; 2022; 17(3):e0265677. PubMed ID: 35358237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.