These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35454424)

  • 21. Flexural and Shear Tests on Reinforced Concrete Bridge Deck Slab Segments with a Textile-Reinforced Concrete Strengthening Layer.
    Adam V; Bielak J; Dommes C; Will N; Hegger J
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32971861
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Artificial Neural Network (ANN) and Finite Element (FEM) Models for GFRP-Reinforced Concrete Columns under Axial Compression.
    Isleem HF; Tayeh BA; Alaloul WS; Musarat MA; Raza A
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885326
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flexural Behavior of Composite Concrete Slabs Made with Steel and Polypropylene Fibers Reinforced Concrete in the Compression Zone.
    Sadowska-Buraczewska B; Szafraniec M; Barnat-Hunek D; Łagód G
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32824234
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of Natural and Synthetic Fiber-Reinforced Composites for Punching Shear of Flat Slabs: A Comparative Study.
    Joyklad P; Yooprasertchai E; Wiwatrojanagul P; Chaiyasarn K; Ali N; Hussain Q
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215632
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimal Design of Reinforced Concrete Materials in Construction.
    Rady M; Mahfouz SY; Taher SEF
    Materials (Basel); 2022 Apr; 15(7):. PubMed ID: 35407958
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Research on Concrete Columns Reinforced with New Developed High-Strength Steel under Eccentric Loading.
    Hou Y; Cao S; Ni X; Li Y
    Materials (Basel); 2019 Jul; 12(13):. PubMed ID: 31277215
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shear Cap Size Selection Method Based on Parametric Analysis of ACI-318 Code and Eurocode 2 Standard.
    Grabski M; Ambroziak A
    Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33153117
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neutral Axis Depth versus Ductility and Plastic Rotation Capacity on Bending in Lightweight-Aggregate Concrete Beams.
    Bernardo L; Nepomuceno M; Pinto H
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31652946
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ductility Enhancement of Sustainable Fibrous-Reinforced High-Strength Lightweight Concrete.
    Hosen MA; Shammas MI; Shill SK; Al-Deen S; Jumaat MZ; Hashim H
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215640
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Database of Shear Experiments on Steel Fiber Reinforced Concrete Beams without Stirrups.
    Lantsoght EOL
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30893925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low reversed cyclic loading tests for integrated precast structure of lightweight wall with single-row reinforcement under a lightweight steel frame.
    Suizi J; Wanlin C; Yuchen Z
    R Soc Open Sci; 2018 Oct; 5(10):180321. PubMed ID: 30473809
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two-Way Shear Resistance of FRP Reinforced-Concrete Slabs: Data and a Comparative Study.
    Aslam F; AbdelMongy M; Alzara M; Ibrahim T; Deifalla AF; Yosri AM
    Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36145944
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Numerical Deformation Analysis of Reinforced Lightweight Aggregate Concrete Flexural Members.
    Bacinskas D; Rumsys D; Kaklauskas G
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160950
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Effect of Steel and Basalt Fibers on the Shear Behavior of Double-Span Fiber Reinforced Concrete Beams.
    Krassowska J; Kosior-Kazberuk M
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683681
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural Behavior of High-Strength Concrete Slabs Reinforced with GFRP Bars.
    Adam MA; Erfan AM; Habib FA; El-Sayed TA
    Polymers (Basel); 2021 Sep; 13(17):. PubMed ID: 34503037
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flexural Capacity and Deflection of Fiber-Reinforced Lightweight Aggregate Concrete Beams Reinforced with GFRP Bars.
    Liu X; Sun Y; Wu T
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30791531
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of Steel Fiber Content on Shear Behavior of Reinforced Expanded-Shale Lightweight Concrete Beams with Stirrups.
    Li C; Zhao M; Zhang X; Li J; Li X; Zhao M
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33653011
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting Performance of Lightweight Concrete with Granulated Expanded Glass and Ash Aggregate by Means of Using Artificial Neural Networks.
    Kurpinska M; Kułak L
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31234516
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Illumination of Interior Spaces through Structures Made of Unified Slabs of High-Performance Light-Transmitting Concrete with Embedded Optical Fibers.
    Štochl N; Vychytil J; Hájek P
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109979
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of the Interface Shear Strength between Ultra-High-Performance Concrete and Normal Concrete Using Artificial Neural Networks.
    Du C; Liu X; Liu Y; Tong T
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.