These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 35454516)
1. Machine Learning Prediction Models to Evaluate the Strength of Recycled Aggregate Concrete. Yuan X; Tian Y; Ahmad W; Ahmad A; Usanova KI; Mohamed AM; Khallaf R Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454516 [TBL] [Abstract][Full Text] [Related]
2. Comparison of Prediction Models Based on Machine Learning for the Compressive Strength Estimation of Recycled Aggregate Concrete. Khan K; Ahmad W; Amin MN; Aslam F; Ahmad A; Al-Faiad MA Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629456 [TBL] [Abstract][Full Text] [Related]
3. Use of Artificial Intelligence Methods for Predicting the Strength of Recycled Aggregate Concrete and the Influence of Raw Ingredients. Pan X; Xiao Y; Suhail SA; Ahmad W; Murali G; Salmi A; Mohamed A Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744254 [TBL] [Abstract][Full Text] [Related]
4. Ensemble Machine-Learning-Based Prediction Models for the Compressive Strength of Recycled Powder Mortar. Fei Z; Liang S; Cai Y; Shen Y Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676320 [TBL] [Abstract][Full Text] [Related]
5. Prediction of Compressive Strength of Sustainable Foam Concrete Using Individual and Ensemble Machine Learning Approaches. Ullah HS; Khushnood RA; Farooq F; Ahmad J; Vatin NI; Ewais DYZ Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591498 [TBL] [Abstract][Full Text] [Related]
6. Mixture Optimization of Recycled Aggregate Concrete Using Hybrid Machine Learning Model. Nunez I; Marani A; Nehdi ML Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 33003383 [TBL] [Abstract][Full Text] [Related]
7. Flexural Strength Prediction of Steel Fiber-Reinforced Concrete Using Artificial Intelligence. Zheng D; Wu R; Sufian M; Kahla NB; Atig M; Deifalla AF; Accouche O; Azab M Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35897626 [TBL] [Abstract][Full Text] [Related]
8. Use of Artificial Intelligence for Predicting Parameters of Sustainable Concrete and Raw Ingredient Effects and Interactions. Amin MN; Ahmad W; Khan K; Ahmad A; Nazar S; Alabdullah AA Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35955144 [TBL] [Abstract][Full Text] [Related]
9. Data-Driven Techniques for Evaluating the Mechanical Strength and Raw Material Effects of Steel Fiber-Reinforced Concrete. Al-Hashem MN; Amin MN; Ahmad W; Khan K; Ahmad A; Ehsan S; Al-Ahmad QMS; Qadir MG Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234267 [TBL] [Abstract][Full Text] [Related]
10. Application of Ensemble Machine Learning Methods to Estimate the Compressive Strength of Fiber-Reinforced Nano-Silica Modified Concrete. Anjum M; Khan K; Ahmad W; Ahmad A; Amin MN; Nafees A Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36146051 [TBL] [Abstract][Full Text] [Related]
11. Influence of Pretreatment Methods on Compressive Performance Improvement and Failure Mechanism Analysis of Recycled Aggregate Concrete. Lv D; Huang K; Wang W Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241433 [TBL] [Abstract][Full Text] [Related]
13. Artificial neural network, machine learning modelling of compressive strength of recycled coarse aggregate based self-compacting concrete. Jagadesh P; Khan AH; Priya BS; Asheeka A; Zoubir Z; Magbool HM; Alam S; Bakather OY PLoS One; 2024; 19(5):e0303101. PubMed ID: 38739642 [TBL] [Abstract][Full Text] [Related]
14. Forecasting the strength of preplaced aggregate concrete using interpretable machine learning approaches. Javed MF; Fawad M; Lodhi R; Najeh T; Gamil Y Sci Rep; 2024 Apr; 14(1):8381. PubMed ID: 38600161 [TBL] [Abstract][Full Text] [Related]
15. Compressive Strength Estimation of Steel-Fiber-Reinforced Concrete and Raw Material Interactions Using Advanced Algorithms. Khan K; Ahmad W; Amin MN; Ahmad A; Nazar S; Alabdullah AA Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35956580 [TBL] [Abstract][Full Text] [Related]
16. Comparative Study of Supervised Machine Learning Algorithms for Predicting the Compressive Strength of Concrete at High Temperature. Ahmad A; Ostrowski KA; Maślak M; Farooq F; Mehmood I; Nafees A Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361416 [TBL] [Abstract][Full Text] [Related]
17. Prediction of the Compressive Strength of Recycled Aggregate Concrete Based on Artificial Neural Network. Bu L; Du G; Hou Q Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300839 [TBL] [Abstract][Full Text] [Related]
18. Testing and Prediction of the Strength Development of Recycled-Aggregate Concrete with Large Particle Natural Aggregate. Li C; Wang F; Deng X; Li Y; Zhao S Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31212785 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of Artificial Intelligence Methods to Estimate the Compressive Strength of Geopolymers. Zou Y; Zheng C; Alzahrani AM; Ahmad W; Ahmad A; Mohamed AM; Khallaf R; Elattar S Gels; 2022 Apr; 8(5):. PubMed ID: 35621569 [TBL] [Abstract][Full Text] [Related]
20. Split Tensile Strength Prediction of Recycled Aggregate-Based Sustainable Concrete Using Artificial Intelligence Methods. Amin MN; Ahmad A; Khan K; Ahmad W; Nazar S; Faraz MI; Alabdullah AA Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744356 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]