These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 35454516)
21. Machine Learning-Based Predictive Model for Tensile and Flexural Strength of 3D-Printed Concrete. Ali A; Riaz RD; Malik UJ; Abbas SB; Usman M; Shah MU; Kim IH; Hanif A; Faizan M Materials (Basel); 2023 Jun; 16(11):. PubMed ID: 37297284 [TBL] [Abstract][Full Text] [Related]
22. Hybrid nonlinear regression model versus MARS, MEP, and ANN to evaluate the effect of the size and content of waste tire rubber on the compressive strength of concrete. Ismael Jaf DK; Abdalla A; Mohammed AS; Abdulrahman PI; Rawaz Kurda ; Mohammed AA Heliyon; 2024 Feb; 10(4):e25997. PubMed ID: 38384542 [TBL] [Abstract][Full Text] [Related]
23. Concrete compressive strength prediction modeling utilizing deep learning long short-term memory algorithm for a sustainable environment. Latif SD Environ Sci Pollut Res Int; 2021 Jun; 28(23):30294-30302. PubMed ID: 33590396 [TBL] [Abstract][Full Text] [Related]
25. Machine learning and interactive GUI for concrete compressive strength prediction. Elshaarawy MK; Alsaadawi MM; Hamed AK Sci Rep; 2024 Jul; 14(1):16694. PubMed ID: 39030283 [TBL] [Abstract][Full Text] [Related]
26. Predicting the Mechanical Properties of RCA-Based Concrete Using Supervised Machine Learning Algorithms. Shang M; Li H; Ahmad A; Ahmad W; Ostrowski KA; Aslam F; Joyklad P; Majka TM Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057364 [TBL] [Abstract][Full Text] [Related]
27. Soft computing techniques to predict the compressive strength of green self-compacting concrete incorporating recycled plastic aggregates and industrial waste ashes. Faraj RH; Mohammed AA; Omer KM; Ahmed HU Clean Technol Environ Policy; 2022; 24(7):2253-2281. PubMed ID: 35531082 [TBL] [Abstract][Full Text] [Related]
28. Experimental Investigation and Machine Learning Prediction of Mechanical Properties of Rubberized Concrete for Sustainable Construction. Vadivel TS; Suseelan A; Karthick K; Safran M; Alfarhood S Sci Rep; 2024 Sep; 14(1):22725. PubMed ID: 39349571 [TBL] [Abstract][Full Text] [Related]
29. Investigating the Effects of Recycled Aggregate and Mineral Admixtures on the Mechanical Properties and Performance of Concrete. Fawzy A; Elshami A; Ahmad S Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512409 [TBL] [Abstract][Full Text] [Related]
30. Using Machine Learning Algorithms to Estimate the Compressive Property of High Strength Fiber Reinforced Concrete. Dai L; Wu X; Zhou M; Ahmad W; Ali M; Sabri MMS; Salmi A; Ewais DYZ Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806575 [TBL] [Abstract][Full Text] [Related]
31. Comparative analysis of various machine learning algorithms to predict 28-day compressive strength of Self-compacting concrete. Inqiad WB; Siddique MS; Alarifi SS; Butt MJ; Najeh T; Gamil Y Heliyon; 2023 Nov; 9(11):e22036. PubMed ID: 38045144 [TBL] [Abstract][Full Text] [Related]
32. Forecasting the Mechanical Properties of Plastic Concrete Employing Experimental Data Using Machine Learning Algorithms: DT, MLPNN, SVM, and RF. Nafees A; Khan S; Javed MF; Alrowais R; Mohamed AM; Mohamed A; Vatin NI Polymers (Basel); 2022 Apr; 14(8):. PubMed ID: 35458331 [TBL] [Abstract][Full Text] [Related]
33. Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Machine Learning Techniques. Nafees A; Amin MN; Khan K; Nazir K; Ali M; Javed MF; Aslam F; Musarat MA; Vatin NI Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012050 [TBL] [Abstract][Full Text] [Related]
34. A Comparison of Machine Learning Tools That Model the Splitting Tensile Strength of Self-Compacting Recycled Aggregate Concrete. de-Prado-Gil J; Palencia C; Jagadesh P; Martínez-García R Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744223 [TBL] [Abstract][Full Text] [Related]
35. Parent Concrete Strength Effects on the Quality of Recycled Aggregate Concrete: A Review. Gebremariam HG; Taye S; Tarekegn AG Heliyon; 2024 Feb; 10(4):e26212. PubMed ID: 38404853 [TBL] [Abstract][Full Text] [Related]
36. Predicting compressive strength of high-performance concrete with high volume ground granulated blast-furnace slag replacement using boosting machine learning algorithms. Rathakrishnan V; Bt Beddu S; Ahmed AN Sci Rep; 2022 Jun; 12(1):9539. PubMed ID: 35680937 [TBL] [Abstract][Full Text] [Related]
37. Development of environment-friendly and ductile recycled aggregate concrete through synergetic use of hybrid fibers. Ali B Environ Sci Pollut Res Int; 2022 May; 29(23):34452-34463. PubMed ID: 35038095 [TBL] [Abstract][Full Text] [Related]
38. Predictive Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Artificial Intelligence Approaches: MLPNN, ANFIS, and GEP. Nafees A; Javed MF; Khan S; Nazir K; Farooq F; Aslam F; Musarat MA; Vatin NI Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947124 [TBL] [Abstract][Full Text] [Related]
39. Mechanical Framework for Geopolymer Gels Construction: An Optimized LSTM Technique to Predict Compressive Strength of Fly Ash-Based Geopolymer Gels Concrete. Shi X; Chen S; Wang Q; Lu Y; Ren S; Huang J Gels; 2024 Feb; 10(2):. PubMed ID: 38391478 [TBL] [Abstract][Full Text] [Related]
40. Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms. Ahmad A; Ahmad W; Chaiyasarn K; Ostrowski KA; Aslam F; Zajdel P; Joyklad P Polymers (Basel); 2021 Oct; 13(19):. PubMed ID: 34641204 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]