These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 35454723)
21. Roles of the GA-mediated Chen G; Li J; Liu Y; Zhang Q; Gao Y; Fang K; Cao Q; Qin L; Xing Y Int J Mol Sci; 2019 Mar; 20(7):. PubMed ID: 30934840 [TBL] [Abstract][Full Text] [Related]
22. Pan-genome analysis of three main Chinese chestnut varieties. Hu G; Cheng L; Cheng Y; Mao W; Qiao Y; Lan Y Front Plant Sci; 2022; 13():916550. PubMed ID: 35958219 [TBL] [Abstract][Full Text] [Related]
23. Transcriptome Analysis Reveals the Mechanism of Cold-Induced Sweetening in Chestnut during Cold Storage. Zhan C; Jia R; Yang S; Zhang M; Peng L Foods; 2024 Sep; 13(17):. PubMed ID: 39272587 [TBL] [Abstract][Full Text] [Related]
24. [Nutrient cycling in Castanea mollissima B1 forest at the Miyun reservoir watershed, Beijing]. Liu S; Yu X; Hu C; Gao G Ying Yong Sheng Tai Xue Bao; 2003 Oct; 14(10):1597-601. PubMed ID: 14986347 [TBL] [Abstract][Full Text] [Related]
25. Construction of Pseudomolecules for the Chinese Chestnut ( Wang J; Tian S; Sun X; Cheng X; Duan N; Tao J; Shen G G3 (Bethesda); 2020 Oct; 10(10):3565-3574. PubMed ID: 32847817 [TBL] [Abstract][Full Text] [Related]
26. Substantial genome synteny preservation among woody angiosperm species: comparative genomics of Chinese chestnut (Castanea mollissima) and plant reference genomes. Staton M; Zhebentyayeva T; Olukolu B; Fang GC; Nelson D; Carlson JE; Abbott AG BMC Genomics; 2015 Oct; 16():744. PubMed ID: 26438416 [TBL] [Abstract][Full Text] [Related]
27. Genome-Wide Identification of the Zhao S; Nie X; Liu X; Wang B; Liu S; Qin L; Xing Y Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555843 [TBL] [Abstract][Full Text] [Related]
28. Anti-inflammatory effect of flavonoids from chestnut flowers in lipopolysaccharide-stimulated RAW 264.7 macrophages and acute lung injury in mice. Peng F; Yin H; Du B; Niu K; Yang Y; Wang S J Ethnopharmacol; 2022 May; 290():115086. PubMed ID: 35157952 [TBL] [Abstract][Full Text] [Related]
29. Effects of GABA and Vigabatrin on the Germination of Chinese Chestnut Recalcitrant Seeds and Its Implications for Seed Dormancy and Storage. Du C; Chen W; Wu Y; Wang G; Zhao J; Sun J; Ji J; Yan D; Jiang Z; Shi S Plants (Basel); 2020 Apr; 9(4):. PubMed ID: 32260136 [TBL] [Abstract][Full Text] [Related]
30. Development and characterization of an edible chitosan-whey protein nano composite film for chestnut (Castanea mollissima Bl.) preservation. Huang Y; Gu C; He S; Zhu D; Liu X; Chen Z J Food Sci; 2020 Jul; 85(7):2114-2123. PubMed ID: 32519374 [TBL] [Abstract][Full Text] [Related]
31. Transcriptome profiling of Gerbera hybrida reveals that stem bending is caused by water stress and regulation of abscisic acid. Ge Y; Lai Q; Luo P; Liu X; Chen W BMC Genomics; 2019 Jul; 20(1):600. PubMed ID: 31331262 [TBL] [Abstract][Full Text] [Related]
32. RNA-sequencing reveals the metabolism regulation mechanism of sheep skeletal muscle under nutrition deprivation stress. Qin J; Guo LR; Li JL; Zhang FH; Zhao DP; Du R Animal; 2021 Jul; 15(7):100254. PubMed ID: 34090092 [TBL] [Abstract][Full Text] [Related]
33. Comparative transcriptome and proteome provide new insights into the regulatory mechanisms of the postharvest deterioration of Pleurotus tuoliensis fruitbodies during storage. Wu MX; Zou Y; Yu YH; Chen BX; Zheng QW; Ye ZW; Wei T; Ye SQ; Guo LQ; Lin JF Food Res Int; 2021 Sep; 147():110540. PubMed ID: 34399517 [TBL] [Abstract][Full Text] [Related]
34. Combined genome-wide association analysis and transcriptome sequencing to identify candidate genes for flax seed fatty acid metabolism. Xie D; Dai Z; Yang Z; Tang Q; Deng C; Xu Y; Wang J; Chen J; Zhao D; Zhang S; Zhang S; Su J Plant Sci; 2019 Sep; 286():98-107. PubMed ID: 31300147 [TBL] [Abstract][Full Text] [Related]
35. Transcriptome profile of liver at different physiological stages reveals potential mode for lipid metabolism in laying hens. Li H; Wang T; Xu C; Wang D; Ren J; Li Y; Tian Y; Wang Y; Jiao Y; Kang X; Liu X BMC Genomics; 2015 Oct; 16():763. PubMed ID: 26452545 [TBL] [Abstract][Full Text] [Related]
36. Transcriptome analysis provides insights into the non-methylated lignin synthesis in Paphiopedilum armeniacum seed. Fang L; Xu X; Li J; Zheng F; Li M; Yan J; Li Y; Zhang X; Li L; Ma G; Zhang A; Lv F; Wu K; Zeng S BMC Genomics; 2020 Jul; 21(1):524. PubMed ID: 32727352 [TBL] [Abstract][Full Text] [Related]
38. A transcriptomic evaluation of the mechanism of programmed cell death of the replaceable bud in Chinese chestnut. Guo Y; Zhang S; Li Y; Zhang X; Liu H; Liu S; Liu J; Wang G Open Life Sci; 2023; 18(1):20220635. PubMed ID: 37426617 [TBL] [Abstract][Full Text] [Related]
39. Transcriptome analysis identifies differentially expressed genes in the progenies of a cross between two low phytic acid soybean mutants. Jin H; Yu X; Yang Q; Fu X; Yuan F Sci Rep; 2021 Apr; 11(1):8740. PubMed ID: 33888781 [TBL] [Abstract][Full Text] [Related]
40. Integrated Physiochemical, Hormonal, and Transcriptomic Analysis Revealed the Underlying Mechanisms for Granulation in Huyou ( Kang C; Jiang A; Yang H; Zheng G; Wang Y; Cao J; Sun C Front Plant Sci; 2022; 13():923443. PubMed ID: 35909750 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]