BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35454743)

  • 1. Identification of Moldy Peanuts under Different Varieties and Moisture Content Using Hyperspectral Imaging and Data Augmentation Technologies.
    Liu Z; Jiang J; Li M; Yuan D; Nie C; Sun Y; Zheng P
    Foods; 2022 Apr; 11(8):. PubMed ID: 35454743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of fungi-contaminated peanuts using hyperspectral imaging technology and joint sparse representation model.
    Qi X; Jiang J; Cui X; Yuan D
    J Food Sci Technol; 2019 Jul; 56(7):3195-3204. PubMed ID: 31274887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Maize with Different Moldy Levels Based on Catalase Activity and Data Fusion of Hyperspectral Images.
    Wang W; Huang W; Yu H; Tian X
    Foods; 2022 Jun; 11(12):. PubMed ID: 35741924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid nondestructive detection of peanut varieties and peanut mildew based on hyperspectral imaging and stacked machine learning models.
    Wu Q; Xu L; Zou Z; Wang J; Zeng Q; Wang Q; Zhen J; Wang Y; Zhao Y; Zhou M
    Front Plant Sci; 2022; 13():1047479. PubMed ID: 36438117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of spectral-spatial characteristics in shortwave infrared hyperspectral images to classify and identify fungi-contaminated peanuts.
    Qiao X; Jiang J; Qi X; Guo H; Yuan D
    Food Chem; 2017 Apr; 220():393-399. PubMed ID: 27855916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral and Image Integrated Analysis of Hyperspectral Data for Waxy Corn Seed Variety Classification.
    Yang X; Hong H; You Z; Cheng F
    Sensors (Basel); 2015 Jul; 15(7):15578-94. PubMed ID: 26140347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel method for peanut variety identification and classification by Improved VGG16.
    Yang H; Ni J; Gao J; Han Z; Luan T
    Sci Rep; 2021 Aug; 11(1):15756. PubMed ID: 34344983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variety Identification of Raisins Using Near-Infrared Hyperspectral Imaging.
    Feng L; Zhu S; Zhang C; Bao Y; Gao P; He Y
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30412997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The Classification of Wheat Varieties Based on Near Infrared Hyperspectral Imaging and Information Fusion].
    Dong G; Guo J; Wang C; Chen ZL; Zheng L; Zhu DZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Dec; 35(12):3369-74. PubMed ID: 26964212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Maize Kernel Vigor under Different Accelerated Aging Times Using Hyperspectral Imaging.
    Feng L; Zhu S; Zhang C; Bao Y; Feng X; He Y
    Molecules; 2018 Nov; 23(12):. PubMed ID: 30477266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Identification of varieties of black bean using ground based hyperspectral imaging].
    Zhang C; Liu F; Zhang HL; Kong WW; He Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Mar; 34(3):746-50. PubMed ID: 25208405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer-assisted lip diagnosis on Traditional Chinese Medicine using multi-class support vector machines.
    Li F; Zhao C; Xia Z; Wang Y; Zhou X; Li GZ
    BMC Complement Altern Med; 2012 Aug; 12():127. PubMed ID: 22898352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of long-wave near infrared hyperspectral imaging for determination of moisture content of single maize seed.
    Wang Z; Fan S; Wu J; Zhang C; Xu F; Yang X; Li J
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jun; 254():119666. PubMed ID: 33744703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-Destructive Detection of Moldy Walnuts Based on Hyperspectral Imaging Technology.
    Xu J; Xu D; Bai X; Yang R; Cao J
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid prediction of moisture content of dehydrated prawns using online hyperspectral imaging system.
    Wu D; Shi H; Wang S; He Y; Bao Y; Liu K
    Anal Chim Acta; 2012 May; 726():57-66. PubMed ID: 22541014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research on moldy tea feature classification based on WKNN algorithm and NIR hyperspectral imaging.
    Xin Z; Jun S; Xiaohong W; Bing L; Ning Y; Chunxia D
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():378-383. PubMed ID: 30157445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rice seed cultivar identification using near-infrared hyperspectral imaging and multivariate data analysis.
    Kong W; Zhang C; Liu F; Nie P; He Y
    Sensors (Basel); 2013 Jul; 13(7):8916-27. PubMed ID: 23857260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid determination of pit mud moisture content using hyperspectral imaging.
    Zhu M; Chen P; Hu XJ; Mao X; Tian JP; Luo HB; Huang D
    Food Sci Nutr; 2020 Jan; 8(1):179-189. PubMed ID: 31993144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Prediction of Encapsulation Temperatures of Copolymer Films in Photovoltaic Cells Using Hyperspectral Imaging Techniques and Chemometrics].
    Lin P; Chen YM; Yao ZL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Nov; 35(11):3182-6. PubMed ID: 26978932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Proportion of aflatoxin B1 contaminated kernels and its concentration in imported peanut samples].
    Hirano S; Shima T; Shimada T
    Shokuhin Eiseigaku Zasshi; 2001 Aug; 42(4):237-42. PubMed ID: 11817138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.