These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35455117)

  • 1. Numerical Analysis and Comparison of Four Stabilized Finite Element Methods for the Steady Micropolar Equations.
    Liu J; Liu D
    Entropy (Basel); 2022 Mar; 24(4):. PubMed ID: 35455117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite Element Iterative Methods for the 3D Steady Navier--Stokes Equations.
    He Y
    Entropy (Basel); 2021 Dec; 23(12):. PubMed ID: 34945965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical Analysis and Comparison of Three Iterative Methods Based on Finite Element for the 2D/3D Stationary Micropolar Fluid Equations.
    Xing X; Liu D
    Entropy (Basel); 2022 Apr; 24(5):. PubMed ID: 35626514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uniform Finite Element Error Estimates with Power-Type Asymptotic Constants for Unsteady Navier-Stokes Equations.
    Xie C; Wang K
    Entropy (Basel); 2022 Jul; 24(7):. PubMed ID: 35885169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Optimal Error Estimate of the Fully Discrete Locally Stabilized Finite Volume Method for the Non-Stationary Navier-Stokes Problem.
    He G; Zhang Y
    Entropy (Basel); 2022 May; 24(6):. PubMed ID: 35741489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Error estimates of finite element methods for fractional stochastic Navier-Stokes equations.
    Li X; Yang X
    J Inequal Appl; 2018; 2018(1):284. PubMed ID: 30839715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radial Basis Function Finite Difference Method Based on Oseen Iteration for Solving Two-Dimensional Navier-Stokes Equations.
    Mu L; Feng X
    Entropy (Basel); 2023 May; 25(5):. PubMed ID: 37238559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Error estimates and physics informed augmentation of neural networks for thermally coupled incompressible Navier Stokes equations.
    Goraya S; Sobh N; Masud A
    Comput Mech; 2023 Aug; 72(2):267-289. PubMed ID: 37583614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Crank-Nicolson finite spectral element method for the 2D non-stationary Stokes equations about vorticity-stream functions.
    Zhou Y; Luo Z; Teng F
    J Inequal Appl; 2018; 2018(1):320. PubMed ID: 30839842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uniform Error Estimates of the Finite Element Method for the Navier-Stokes Equations in R2 with
    Ren S; Wang K; Feng X
    Entropy (Basel); 2023 Apr; 25(5):. PubMed ID: 37238481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Turbulent Micropolar SPH Fluids with Foam.
    Bender J; Koschier D; Kugelstadt T; Weiler M
    IEEE Trans Vis Comput Graph; 2019 Jun; 25(6):2284-2295. PubMed ID: 29993747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining existing numerical models with data assimilation using weighted least-squares finite element methods.
    Rajaraman PK; Manteuffel TA; Belohlavek M; Heys JJ
    Int J Numer Method Biomed Eng; 2017 Jan; 33(1):. PubMed ID: 26991079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Mixed Finite Element Method for Stationary Magneto-Heat Coupling System with Variable Coefficients.
    Ding Q; Long X; Mao S
    Entropy (Basel); 2022 Jun; 24(7):. PubMed ID: 35885135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HiDeNN-FEM: A seamless machine learning approach to nonlinear finite element analysis.
    Liu Y; Park C; Lu Y; Mojumder S; Liu WK; Qian D
    Comput Mech; 2023 Jul; 72(1):173-194. PubMed ID: 38107347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. COMPUTING ILL-POSED TIME-REVERSED 2D NAVIER-STOKES EQUATIONS, USING A STABILIZED EXPLICIT FINITE DIFFERENCE SCHEME MARCHING BACKWARD IN TIME.
    Carasso AS
    Inverse Probl Sci Eng; 2020; 28(7):. PubMed ID: 34131431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite Element Method-Based Dynamic Response of Micropolar Polymers with Voids.
    Vlase S; Marin M
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physics-conforming constraints-oriented numerical method.
    Ahusborde E; Gruber R; Azaiez M; Sawley ML
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056704. PubMed ID: 17677195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal Convergence Analysis of Two-Level Nonconforming Finite Element Iterative Methods for 2D/3D MHD Equations.
    Su H; Xu J; Feng X
    Entropy (Basel); 2022 Apr; 24(5):. PubMed ID: 35626472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A semi-implicit augmented IIM for Navier-Stokes equations with open, traction, or free boundary conditions.
    Li Z; Xiao L; Cai Q; Zhao H; Luo R
    J Comput Phys; 2015 Aug; 297():182-193. PubMed ID: 27087702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A partially penalty immersed Crouzeix-Raviart finite element method for interface problems.
    An N; Yu X; Chen H; Huang C; Liu Z
    J Inequal Appl; 2017; 2017(1):186. PubMed ID: 28855785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.