These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 35455176)
1. Superheating Control of ORC Systems via Minimum ( Zhang J; Pu J; Lin M; Ma Q Entropy (Basel); 2022 Apr; 24(4):. PubMed ID: 35455176 [TBL] [Abstract][Full Text] [Related]
2. Entropy and Entransy Dissipation Analysis of a Basic Organic Rankine Cycles (ORCs) to Recover Low-Grade Waste Heat Using Mixture Working Fluids. Feng YQ; Luo QH; Wang Q; Wang S; He ZX; Zhang W; Wang X; An QS Entropy (Basel); 2018 Oct; 20(11):. PubMed ID: 33266542 [TBL] [Abstract][Full Text] [Related]
3. Exergoeconomic analysis and multi-objective optimization of ORC configurations via Taguchi-Grey Relational Methods. Özdemir Küçük E; Kılıç M Heliyon; 2023 Apr; 9(4):e15007. PubMed ID: 37064436 [TBL] [Abstract][Full Text] [Related]
4. A review of conventional and exergetic life cycle assessments of organic Rankine cycle plants exploiting various low-temperature energy resources. Oyekale J; Emagbetere E Heliyon; 2022 Jul; 8(7):e09833. PubMed ID: 35815127 [TBL] [Abstract][Full Text] [Related]
5. Engine Load Effects on the Energy and Exergy Performance of a Medium Cycle/Organic Rankine Cycle for Exhaust Waste Heat Recovery. Liu P; Shu G; Tian H; Wang X Entropy (Basel); 2018 Feb; 20(2):. PubMed ID: 33265228 [TBL] [Abstract][Full Text] [Related]
6. Event-Triggered Constrained Optimal Control for Organic Rankine Cycle Systems via Safe Reinforcement Learning. Zhang L; Lin R; Xie L; Dai W; Su H IEEE Trans Neural Netw Learn Syst; 2024 May; 35(5):7126-7137. PubMed ID: 37015440 [TBL] [Abstract][Full Text] [Related]
7. Analysis of Different Organic Rankine and Kalina Cycles for Waste Heat Recovery in the Iron and Steel Industry. Atashbozorg D; Arasteh AM; Salehi G; Azad MT ACS Omega; 2022 Dec; 7(50):46099-46117. PubMed ID: 36570319 [TBL] [Abstract][Full Text] [Related]
8. EEG adaptive noise cancellation using information theoretic approach. Darroudi A; Parchami J; Razavi MK; Sarbisheie G Biomed Mater Eng; 2017; 28(4):325-338. PubMed ID: 28869426 [TBL] [Abstract][Full Text] [Related]
9. Technical assessment of novel organic Rankine cycle driven cascade refrigeration system using environmental friendly refrigerants: 4E and optimization approaches. Bhuvaneshwaran K; Govindasamy PK Environ Sci Pollut Res Int; 2023 Mar; 30(12):35096-35114. PubMed ID: 36525184 [TBL] [Abstract][Full Text] [Related]
10. Decelerating catalyst aging of natural gas engines using organic Rankine cycle under road conditions. Wang C; Wang X; Ge Y; Xu Y; Hao L; Tan J; Li R; Wen M; Wang Y Heliyon; 2024 Jun; 10(12):e33067. PubMed ID: 38994049 [TBL] [Abstract][Full Text] [Related]
11. Advanced process integration for supercritical production of biodiesel: Residual waste heat recovery Aboelazayem O; Gadalla M; Alhajri I; Saha B Renew Energy; 2021 Feb; 164():433-443. PubMed ID: 32963424 [TBL] [Abstract][Full Text] [Related]
12. Advanced Exergy-Based Analysis of an Organic Rankine Cycle (ORC) for Waste Heat Recovery. Fergani Z; Morosuk T Entropy (Basel); 2023 Oct; 25(10):. PubMed ID: 37895596 [TBL] [Abstract][Full Text] [Related]
13. Comparative Evaluation of Integrated Waste Heat Utilization Systems for Coal-Fired Power Plants Based on In-Depth Boiler-Turbine Integration and Organic Rankine Cycle. Huang S; Li C; Tan T; Fu P; Wang L; Yang Y Entropy (Basel); 2018 Jan; 20(2):. PubMed ID: 33265180 [TBL] [Abstract][Full Text] [Related]
14. Generalized minimum error entropy Kalman filter for non-Gaussian noise. He J; Wang G; Yu H; Liu J; Peng B ISA Trans; 2023 May; 136():663-675. PubMed ID: 36443119 [TBL] [Abstract][Full Text] [Related]
15. The Use of Organic Rankine Cycles for Recovering the Heat Lost in the Compression Area of a Cryogenic Air Separation Unit. Ionita C; Bucsa S; Serban A; Dobre C; Dobrovicescu A Entropy (Basel); 2022 May; 24(6):. PubMed ID: 35741469 [TBL] [Abstract][Full Text] [Related]
16. Non-Gaussian disturbance rejection control for multivariate stochastic systems using moment-generating function. Zhang J; Pu J; Ren M; Zhang Q ISA Trans; 2023 Aug; 139():135-142. PubMed ID: 37230910 [TBL] [Abstract][Full Text] [Related]
17. Non-Gaussian Systems Control Performance Assessment Based on Rational Entropy. Zhou J; Jia Y; Jiang H; Fan S Entropy (Basel); 2018 May; 20(5):. PubMed ID: 33265421 [TBL] [Abstract][Full Text] [Related]
18. Large Eddy Simulation and Thermodynamic Design of the Organic Rankine Cycle Based on Butane Working Fluid and the High-Boiling-Point Phenyl Naphthalene Liquid Heating System. Davidy A Entropy (Basel); 2022 Oct; 24(10):. PubMed ID: 37420481 [TBL] [Abstract][Full Text] [Related]
19. Cascade control of superheated steam temperature with neuro-PID controller. Zhang J; Zhang F; Ren M; Hou G; Fang F ISA Trans; 2012 Nov; 51(6):778-85. PubMed ID: 22776550 [TBL] [Abstract][Full Text] [Related]
20. Environmental sustainability of integrating the organic Rankin cycle with anaerobic digestion and combined heat and power generation. Bacenetti J; Fusi A; Azapagic A Sci Total Environ; 2019 Mar; 658():684-696. PubMed ID: 30678020 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]