These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 35456436)
21. Internal tandem duplication mutations in the tyrosine kinase domain of FLT3 display a higher oncogenic potential than the activation loop D835Y mutation. Marhäll A; Heidel F; Fischer T; Rönnstrand L Ann Hematol; 2018 May; 97(5):773-780. PubMed ID: 29372308 [TBL] [Abstract][Full Text] [Related]
22. The prognostic impact of FLT3-ITD, NPM1 and CEBPa in cytogenetically intermediate-risk AML after first relapse. Kurosawa S; Yamaguchi H; Yamaguchi T; Fukunaga K; Yui S; Kanamori H; Usuki K; Uoshima N; Yanada M; Takeuchi J; Mizuno I; Kanda J; Okamura H; Yano S; Tashiro H; Shindo T; Chiba S; Tomiyama J; Inokuchi K; Fukuda T Int J Hematol; 2020 Aug; 112(2):200-209. PubMed ID: 32495317 [TBL] [Abstract][Full Text] [Related]
23. Revealing molecular architecture of FLT3 internal tandem duplication: Development and clinical validation of a web-based application to generate accurate nomenclature. Ding Y; Smith GH; Deeb K; Schneider T; Campbell A; Zhang L Int J Lab Hematol; 2022 Oct; 44(5):918-927. PubMed ID: 35795913 [TBL] [Abstract][Full Text] [Related]
24. A next-generation sequencing-based assay for minimal residual disease assessment in AML patients with Levis MJ; Perl AE; Altman JK; Gocke CD; Bahceci E; Hill J; Liu C; Xie Z; Carson AR; McClain V; Stenzel TT; Miller JE Blood Adv; 2018 Apr; 2(8):825-831. PubMed ID: 29643105 [TBL] [Abstract][Full Text] [Related]
25. Comprehensive review and evaluation of computational methods for identifying FLT3-internal tandem duplication in acute myeloid leukaemia. Yuan D; He X; Han X; Yang C; Liu F; Zhang S; Luan H; Li R; He J; Duan X; Wang D; Zhou Q; Gao S; Niu B Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33851200 [TBL] [Abstract][Full Text] [Related]
26. The effect of the detection of minimal residual disease for the prognosis and the choice of post-remission therapy of intermediate-risk acute myeloid leukemia without FLT3-ITD, NPM1 and biallelic CEBPA mutations. Zheng WS; Hu YL; Guan LX; Peng B; Wang SY Hematology; 2021 Dec; 26(1):179-185. PubMed ID: 33594943 [TBL] [Abstract][Full Text] [Related]
27. Decision Analysis of Postremission Therapy in Cytogenetically Intermediate-Risk Acute Myeloid Leukemia: The Impact of FLT3 Internal Tandem Duplication, Nucleophosmin, and CCAAT/Enhancer Binding Protein Alpha. Kurosawa S; Yamaguchi H; Yamaguchi T; Fukunaga K; Yui S; Wakita S; Kanamori H; Usuki K; Uoshima N; Yanada M; Shono K; Ueki T; Mizuno I; Yano S; Takeuchi J; Kanda J; Okamura H; Inamoto Y; Inokuchi K; Fukuda T Biol Blood Marrow Transplant; 2016 Jun; 22(6):1125-1132. PubMed ID: 27040395 [TBL] [Abstract][Full Text] [Related]
28. FLT3-ITD and CEBPA Mutations Predict Prognosis in Acute Myelogenous Leukemia Irrespective of Hematopoietic Stem Cell Transplantation. Wang H; Chu TT; Han SY; Qi JQ; Tang YQ; Qiu HY; Fu CC; Tang XW; Ruan CG; Wu DP; Han Y Biol Blood Marrow Transplant; 2019 May; 25(5):941-948. PubMed ID: 30503388 [TBL] [Abstract][Full Text] [Related]
29. Transplant outcomes of the triple-negative NPM1/FLT3-ITD/CEBPA mutation subgroup are equivalent to those of the favourable ELN risk group, but significantly better than the intermediate-I risk group after allogeneic transplant in normal-karyotype AML. Ahn JS; Kim HJ; Kim YK; Jung SH; Yang DH; Lee JJ; Kim NY; Choi SH; Jung CW; Jang JH; Kim HJ; Moon JH; Sohn SK; Won JH; Kim SH; Kim DD Ann Hematol; 2016 Mar; 95(4):625-35. PubMed ID: 26692090 [TBL] [Abstract][Full Text] [Related]
30. Risk assessment in patients with acute myeloid leukemia and a normal karyotype. Bienz M; Ludwig M; Leibundgut EO; Mueller BU; Ratschiller D; Solenthaler M; Fey MF; Pabst T Clin Cancer Res; 2005 Feb; 11(4):1416-24. PubMed ID: 15746041 [TBL] [Abstract][Full Text] [Related]
31. NPM1, FLT3-ITD, CEBPA, and c-kit mutations in 312 Chinese patients with de novo acute myeloid leukemia. Su L; Gao SJ; Li W; Tan YH; Cui JW; Hu RP Hematology; 2014 Sep; 19(6):324-8. PubMed ID: 24164801 [TBL] [Abstract][Full Text] [Related]
32. [Application of High-throughput Sequencing in Acute Myeloid Leukemia Patients with Positive FLT3-ITD]. Ma L; Jiang YW; Wang ST; Liu Q; Cong X; Shen J; Cao YY; Cao YT Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2016 Apr; 24(2):381-7. PubMed ID: 27150996 [TBL] [Abstract][Full Text] [Related]
33. Frequency of FLT3 Internal Tandem Duplications in Adult Syrian Patients with Acute Myeloid Leukemia and Normal Karyotype. Al-Arbeed IF; Wafa A; Moassass F; Al-Halabi B; Al-Achkar W; Abou-Khamis I Asian Pac J Cancer Prev; 2021 Oct; 22(10):3245-3251. PubMed ID: 34711001 [TBL] [Abstract][Full Text] [Related]
34. Detection and Quantification of FLT3 Internal Tandem Duplication Mutations Do Not Vary Significantly Between Whole Blood and Blast-Enriched Samples. Schumacher JA; Holgard VD; Sial F; Pearson LN; Patel JL; Karner KH Am J Clin Pathol; 2020 Jan; 153(2):251-257. PubMed ID: 31628845 [TBL] [Abstract][Full Text] [Related]
35. Ng CWS; Kosmo B; Lee PL; Lee CK; Guo J; Chen Z; Chiu L; Lee HK; Ho S; Zhou J; Lin M; Tan KML; Ban KHK; Tan TW; Chng WJ; Yan B J Clin Pathol; 2018 Jun; 71(6):522-531. PubMed ID: 29180507 [TBL] [Abstract][Full Text] [Related]
36. Analytical validation and performance characteristics of a 48-gene next-generation sequencing panel for detecting potentially actionable genomic alterations in myeloid neoplasms. Rosenthal SH; Gerasimova A; Ma C; Li HR; Grupe A; Chong H; Acab A; Smolgovsky A; Owen R; Elzinga C; Chen R; Sugganth D; Freitas T; Graham J; Champion K; Bhattacharya A; Racke F; Lacbawan F PLoS One; 2021; 16(4):e0243683. PubMed ID: 33909614 [TBL] [Abstract][Full Text] [Related]
37. Classes of ITD Predict Outcomes in AML Patients Treated with FLT3 Inhibitors. Schwartz GW; Manning B; Zhou Y; Velu P; Bigdeli A; Astles R; Lehman AW; Morrissette JJD; Perl AE; Li M; Carroll M; Faryabi RB Clin Cancer Res; 2019 Jan; 25(2):573-583. PubMed ID: 30181385 [TBL] [Abstract][Full Text] [Related]
38. Acute myeloid leukemia with biallelic CEBPA gene mutations and normal karyotype represents a distinct genetic entity associated with a favorable clinical outcome. Dufour A; Schneider F; Metzeler KH; Hoster E; Schneider S; Zellmeier E; Benthaus T; Sauerland MC; Berdel WE; Büchner T; Wörmann B; Braess J; Hiddemann W; Bohlander SK; Spiekermann K J Clin Oncol; 2010 Feb; 28(4):570-7. PubMed ID: 20038735 [TBL] [Abstract][Full Text] [Related]
39. The prevalence and clinical profiles of FLT3-ITD, FLT3-TKD, NPM1, C-KIT, DNMT3A, and CEBPA mutations in a cohort of patients with de novo acute myeloid leukemia from southwest China. Gou H; Zhou J; Ye Y; Hu X; Shang M; Zhang J; Zhao Z; Peng W; Zhou Y; Zhou Y; Song X; Lu X; Ying B Tumour Biol; 2016 Jun; 37(6):7357-70. PubMed ID: 26676635 [TBL] [Abstract][Full Text] [Related]
40. Double CEBPA mutations are prognostically favorable in non-M3 acute myeloid leukemia patients with wild-type NPM1 and FLT3-ITD. Wen XM; Lin J; Yang J; Yao DM; Deng ZQ; Tang CY; Xiao GF; Yang L; Ma JC; Hu JB; Qian W; Qian J Int J Clin Exp Pathol; 2014; 7(10):6832-40. PubMed ID: 25400766 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]