BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 35456662)

  • 1. Towards Selective Binding to the GLUT5 Transporter: Synthesis, Molecular Dynamics and In Vitro Evaluation of Novel C-3-Modified 2,5-Anhydro-D-mannitol Analogs.
    Rana N; Aziz MA; Oraby AK; Wuest M; Dufour J; Abouzid KAM; Wuest F; West FG
    Pharmaceutics; 2022 Apr; 14(4):. PubMed ID: 35456662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Imaging of GLUT1 and GLUT5 in Breast Cancer: A Multitracer Positron Emission Tomography Imaging Study in Mice.
    Wuest M; Hamann I; Bouvet V; Glubrecht D; Marshall A; Trayner B; Soueidan OM; Krys D; Wagner M; Cheeseman C; West F; Wuest F
    Mol Pharmacol; 2018 Feb; 93(2):79-89. PubMed ID: 29142019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New fluorinated fructose analogs as selective probes of the hexose transporter protein GLUT5.
    Soueidan OM; Trayner BJ; Grant TN; Henderson JR; Wuest F; West FG; Cheeseman CI
    Org Biomol Chem; 2015 Jun; 13(23):6511-21. PubMed ID: 25975431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Fluorescence-Based Assay to Probe Inhibitory Effect of Fructose Mimics on GLUT5 Transport in Breast Cancer Cells.
    Rana N; Aziz MA; Serya RAT; Lasheen DS; Samir N; Wuest F; Abouzid KAM; West FG
    ACS Bio Med Chem Au; 2023 Feb; 3(1):51-61. PubMed ID: 37101605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression and function of hexose transporters GLUT1, GLUT2, and GLUT5 in breast cancer-effects of hypoxia.
    Hamann I; Krys D; Glubrecht D; Bouvet V; Marshall A; Vos L; Mackey JR; Wuest M; Wuest F
    FASEB J; 2018 Sep; 32(9):5104-5118. PubMed ID: 29913554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiopharmacological evaluation of 6-deoxy-6-[18F]fluoro-D-fructose as a radiotracer for PET imaging of GLUT5 in breast cancer.
    Wuest M; Trayner BJ; Grant TN; Jans HS; Mercer JR; Murray D; West FG; McEwan AJ; Wuest F; Cheeseman CI
    Nucl Med Biol; 2011 May; 38(4):461-75. PubMed ID: 21531283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable GLUT-Hexose Binding and Transport via Modulation of Hexose C-3 Hydrogen-Bonding Capabilities.
    Kumar Kondapi VP; Soueidan OM; Cheeseman CI; West FG
    Chemistry; 2017 Jun; 23(33):8073-8081. PubMed ID: 28346703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent Hexose Conjugates Establish Stringent Stereochemical Requirement by GLUT5 for Recognition and Transport of Monosaccharides.
    Soueidan OM; Scully TW; Kaur J; Panigrahi R; Belovodskiy A; Do V; Matier CD; Lemieux MJ; Wuest F; Cheeseman C; West FG
    ACS Chem Biol; 2017 Apr; 12(4):1087-1094. PubMed ID: 28205432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of high-affinity ligands and photoaffinity labels for the D-fructose transporter GLUT5.
    Yang J; Dowden J; Tatibouët A; Hatanaka Y; Holman GD
    Biochem J; 2002 Oct; 367(Pt 2):533-9. PubMed ID: 12119043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrimination of GLUTs by Fructose Isomers Enables Simultaneous Screening of GLUT5 and GLUT2 Activity in Live Cells.
    Gora N; Weselinski LJ; Begoyan VV; Cooper A; Choe JY; Tanasova M
    ACS Chem Biol; 2023 May; 18(5):1089-1100. PubMed ID: 37116192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting of GLUT5 for Transporter-Mediated Drug-Delivery Is Contingent upon Substrate Hydrophilicity.
    Nahrjou N; Ghosh A; Tanasova M
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34064801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of a specific inhibitor of human GLUT5 by virtual screening and in vitro transport evaluation.
    George Thompson AM; Ursu O; Babkin P; Iancu CV; Whang A; Oprea TI; Choe JY
    Sci Rep; 2016 Apr; 6():24240. PubMed ID: 27074918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Late-Stage Functionalization through Click Chemistry Provides GLUT5-Targeting Glycoconjugate as a Potential PET Imaging Probe.
    Oronova A; Tanasova M
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human erythrocytes express GLUT5 and transport fructose.
    Concha II; Velásquez FV; Martínez JM; Angulo C; Droppelmann A; Reyes AM; Slebe JC; Vera JC; Golde DW
    Blood; 1997 Jun; 89(11):4190-5. PubMed ID: 9166863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescent THF-based fructose analogue exhibits fructose-dependent uptake.
    Tanasova M; Plutschack M; Muroski ME; Sturla SJ; Strouse GF; McQuade DT
    Chembiochem; 2013 Jul; 14(10):1263-70. PubMed ID: 23784717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PET Imaging of Fructose Metabolism in a Rodent Model of Neuroinflammation with 6-[
    Boyle AJ; Murrell E; Tong J; Schifani C; Narvaez A; Wuest M; West F; Wuest F; Vasdev N
    Molecules; 2022 Dec; 27(23):. PubMed ID: 36500626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of rat GLUT5 and functional analysis of chimeric proteins of GLUT1 glucose transporter and GLUT5 fructose transporter.
    Inukai K; Katagiri H; Takata K; Asano T; Anai M; Ishihara H; Nakazaki M; Kikuchi M; Yazaki Y; Oka Y
    Endocrinology; 1995 Nov; 136(11):4850-7. PubMed ID: 7588216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Permuted 2,4-thiazolidinedione (TZD) analogs as GLUT inhibitors and their in-vitro evaluation in leukemic cells.
    Tilekar K; Upadhyay N; Schweipert M; Hess JD; Macias LH; Mrowka P; Meyer-Almes FJ; Aguilera RJ; Iancu CV; Choe JY; Ramaa CS
    Eur J Pharm Sci; 2020 Nov; 154():105512. PubMed ID: 32801003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of the fructose transporter GLUT5 in human breast cancer.
    Zamora-León SP; Golde DW; Concha II; Rivas CI; Delgado-López F; Baselga J; Nualart F; Vera JC
    Proc Natl Acad Sci U S A; 1996 Mar; 93(5):1847-52. PubMed ID: 8700847
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.